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1. Introduction

What can link homology say about isotopy classes? About stabilization?
questions about algebra: what else can it do, does it have interesting homology,

relationship to massey products, is it cyclic
questions about q: is it 0 on non-trivial knots, connected sum, what does it count,

how closely related is it to the “braidlike resolution” of the tri-plane diagram cf final
computation, what is the “perturbed A∞-algebra”

plus more on this:

Remark 1.1. From a filtered complex one can build a spectral sequence. Therefore
there is a spectral sequence from Kh(D) to Sz(D). Conjecturally, this spectral se-
quence is isomorphic to the spectral sequence from Kh(D) to the Heegaard Floer
homology of the double cover of S3 branched along the mirror of D [?]. This conjec-
ture was confirmed for knots up to ? crossings by Seed in []. Therefore our invariant
of bridge trisections is (conjecturally) backed by Floer theory. It should provide some
guide to constructing invariants of four-manifolds using Gay and Kirby’s trisections
and Heegaard Floer homology. add note about

branched covers of
surfaces

2. Tangles

Definition. A (m,n)-tangle is a tangle with 2m left endpoints and 2n right end-
points.

Given an (m,n)-tangle t and an (n, p)-tangle u, one can form the (m, p)-tangle
tu by concatenation. The identity braid I2n is the identity elements: tI2n = t. The
mirror of t, denoted t, is the tangle given by reflecting t over the plane x = 1

2
in the

unit cube. If t is an (m,n)-tangle, then t is an (n,m)-tangle. If t is a braid, then
t = t−1.

2.1. Braids and plat closures. Let β be a 2n-strand braid. Let pn be the cross-
ingless (0, n)-tangle shown in Figure 1.
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2 ADAM SALTZ

Definition. The link pnβpn is called the plat closure of β. The (0, 2n)-tangle pnβ,

also denoted β̆, is called the half-plat closure of β.

n

Figure 1. The tangle pn.

The braid group B2n acts (on the right) on the set of (0, n)-tangles: t · β = tβ.

Definition. The Hilden subgroup H2n ⊂ B2n is the stabilizer of pn.

So if h, h′ ∈ Hn and β ∈ Bn then the plat closures of β and hβh′ are isotopic.
Birman answered gave necessary and sufficient conditions for β and β′ to have isotopic
plat closures [?]. The situation for half-plat closures is much simpler.

Lemma 2.1. Let β, β′ ∈ Bn. β̆ and β̆′ are isotopic if and only if β′β−1 ∈ Hn.

Proof. pnβ = pnβ
′ if and only if pnβ

′β−1 = pn. �

Otal proved the following theorem, which can be thought of as the knot-theoretic
analogue of Waldhausen’s classical theorem about Heegaard splittings of connected
sums of S1 × S2s.

Theorem (Otal). Let β ∈ B2n. Suppose that β̂ is an unlink with k components.

Write ci for the bridge number of the ith component of β̂. Then there exist h, h′ ∈ H2n

so that

hβh′ = σ2σ4 · · ·σ2c1σ2c1+4σ2c1+6 · · ·σ2c1+2c2+4 · · · σ2c1+···+2ck+4(k−1).

Equivalently, there is a unique bridge splitting of the k component unlink so that the
components have bridge numbers (c1, . . . , ck).

Essentially, each component of β̂ appears as in Figure 2.
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Figure 2

3. Bridge trisections and triplane diagrams

In the three-dimensional world, an n-bridge sphere for a knot K is a sphere S so
that S cuts K into two trivial tangles and so that S ∩K is a collection of n points.
Here “trivial” means that all the arcs can be simultaneously isotoped to lie on S.
The four-dimensional equivalent of a trivial tangle is a trivial disk system.

Definition. A trivial c-disk system is a pair (X,C) where X is a four-ball and C ⊂ X
is a collection of c properly embedded disks which can be simultaneously isotoped to
lie on S.

A fundamental property of trivial disk systems is that (X,C) is determined up to
isotopy rel boundary by the unlink ∂X ∩C, see [?]. So bisections of surfaces are not
very interesting: the disk systems on each side must be identical. This, along with
Gay and Kirby’s trisections of four-manifolds [?], motivates the following definition
of Meier and Zupan.
Definition. [6] A (b; c)-bridge trisection of a knotted surface K ⊂ S4 is a collection
of three c-disk systems (X1, C1), (X2, C2), and (X3, C3), so that

• (X1, X2, X3) is the standard genus 0 trisection of S4.
• C1 ∪ C2 ∪ C3 = K.
• The tangle Tij = Ci ∩ Cj is a trivial b-tangle in the three-ball Bij = Xi ∩Xj

for all distinct i and j.
A (b; c1, c2, c3)-bridge trisection is defined similarly, with (Xi, Ci) a trivial ci-disk
system.

Theorem ([6]). Every knotted surface in S4 admits a bridge trisection.
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The set (B12, T12)∪ (B23, T23)∪ (B31, T31) is called the spine of the trisection. Two
trisections are called isotopic if their spines are isotopic. The sphere at the core of
the unique genus 0 trisection of S4 will be called the bridge sphere. The tangles Tij
intersect the bridge sphere in 2b points. Critically, TijT̄jk is an unlink for any i,j,
k. Any (cyclically ordered) triple of tangle diagrams (t1, t2, t3) satisfying these two
conditions is called a triplane diagram. By definition, every bridge trisection can
be represented by a triplane diagram. Meyer and Zupan show that every triplane
diagram is the triplane diagram of some bridge trisection and determine a complete
set of Reidemeister-type moves for triplane diagrams.

Theorem ([6]). Two triplane diagrams represent the same isotopy class of surface
if and only if they are related by a sequence of the following triplane moves.

Interior Reidemeister move: a Reidemeister move on any of the three tangles
performed in the complement of a neighborhood of the bridge sphere.
Braid transposition: the addition of an Artin generator of the braid or its in-
verse to the ends of all three tangles.
Stabilization and destabilization: Suppose that t1t̄2 has a crossingless compo-
nent C. Let γ be an arc so that ∂γ lies on C, the interior of γ does not intersect
t1t̄2, and γ meets the bridge sphere in a single point called p. The stabilization
of t along γ is the result of surgering along γ to obtain two new tangles, t′1 and
t′2, then adding a small bit to t3 at p to obtain t′3. Destabilization is the reverse
process.

γ

p

p

Figure 3. Stabilization along the arc γ. On top left, the crossingless
component C of t1t̄2. On the bottom left, the bottoms of the strands
of t3 and the point p. On the right, the results of stabilization.

The first two moves correspond to isotopies of the trisection, i.e. isotopies of the
spine which do not pass through the bridge sphere. Two diagrams which can be
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related by these moves are said to lie in the same trisection class. Stabilization
corresponds to pushing part of the surface through the spine and thus it changes the
isotopy type of the trisection. In contrast to some other Reidemeister-type theorems,
destabilization really is necessary: there are triplane diagrams for the same isotopy
class of surface which are not isotopic after any number of stabilizations.

3.1. Orientation.

Definition. An orientation where do we use
this

of a triplane diagram (t1, t2, t3) is a choice of orientation
on each tangle so that t1t2, t2t3, and t3t1 are oriented as links.

Proposition. Let t be a triplane diagram for K. The set of orientations on K is in
bijection with the set of orientations of t.

4. Link homology

This section introduces the link invariants which power the bridge trisection in-
variants following the presentation in [8].

Write V for the algebra F[X]/(X2). It is standard to write v+ for 1 and v− for X.
If D is a crossingless, oriented link diagram with k components, define

CKh(D) = V ⊗k.

Concretely, CKh(D) is the vector space with a basis given by the labelings of the com-
ponents of D by the symbols + and −. Here + corresponds to 1 and − corresponds
to X. We call these labelings the canonical generators of CKh(D).

Figure 4. A crossing, its 0-resolution, and its 1-resolution.

Let D be an oriented link diagram with c crossings. There are two ways to resolve
each crossing, see Figure 4. The set of resolutions of D is thus indexed by {0, 1}c.
For I ∈ {0, 1}c write D(I) for the resolution of D according to I. The collection of
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these diagrams is the cube of resolutions. The Khovanov chain group of D is defined
as

CKh(D) =
⊕

I∈{0,1}c
CKh(D(I)).

We sometimes extend the coefficient ring from F to F[W ] or F[U,W ] where U and
W are formal variables. The definition is exactly the same except that CKh(D(I))
is generated by F[U,W ]-linear combinations of the canonical generators.

There is a partial order on the cube of resolutions induced by the order on {0, 1}.
Write ‖I − J‖ for the `∞ distance between I and J . If I < J , then D(J) may
be obtained from D(I) by ‖I − J‖ diagrammatic one-handle attachments. These
one-handle attachments can be described by planar arcs in D(I). These arcs are
called surgery arcs, or, if they are oriented, decorations. A planar diagram with k
decorations is called a k-dimensional configuration. Orienting the surgery arcs in the
all-zeroes resolution I0 orients them in every other resolution. We will always assume
that orientations of decorations on other resolutions are induced in this way.

Now make some choice of decorations for D(I0). For I < J and ‖I − J‖ = k
there is a k-dimensional configuration C(I, J) which describes how to obtain D(J)
from D(I). Call the circles in C(I, J) which intersect decorations the active part of
C(I, J). The other circles form the passive part. We will often conflate these circles
and their labels, e.g. in the next paragraph.

To define a link homology theory, one cooks cooks up a map FC(I,J) CKh(I) →
CKh(J) using C(I, J). Each of these maps acts by the identity on the passive part of
CKh(I). In other words, write CKh(I) = CKhactive(I) ⊕ CKhpassive(I); then FC(I,J)

restricts to the identity map on CKhpassive(I). This is called the extension rule.

Definition 4.1. Let C(I, J) be a k-dimensional configuration from D(I) to D(J).
• The Khovanov configuration map, KC, is defined via the Frobenius algebra

structure on F[X]/(X2). If k > 1 then KC = 0. If k = 1, then the active
part of C has either one or two circles. KC acts by multiplication or co-
multiplication on the active circles.
• The Bar-Natan configuration map, BC, is defined as follows. Construct a

graph whose vertices are in bijection with the active circles of C. Put an edge
between two vertices ibijection with the decorations connecting the underly-
ing circles. Call C a tree if its graph is a union of trees. Call C a dual tree if
its graph is a disjoint union of vertices connected only to themselves.

Let x ∈ CKh(D(I)) be a canonical generator. BC(x) = 0 unless C is
a disjoint union of v−-labeled trees and v+-labeled dual trees. On the v−-
labeled trees, BC is defined by

BC(v− ⊗ · · · ⊗ v−) = v−
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and BC(x) = 0 for any other labeling. On a v+-labeled dual tree, define

BC(1) = 1⊗ · · · ⊗ 1

and BC(x) = 0 for any other labeling.
• The Szabó configuration map, SC, is defined in [9]. For one-dimensional

configurations, SC = KC. It is important that S satisfies the disconnected
rule: if the union of the active part of C and the decorations has more than
one connected component, then SC = 0.

From these maps we can construct several link homology theories. For a link
diagram D define

dKh, dSz, dS : CKh(D)→ CKh(D)

dKh =
∑
I<J

KC(I,J)

dSz =
∑
I<J

W ‖I−J‖−1SC(I,J)

dBN =
∑
I<J

UW ‖I−J‖−1BC(I,J)

These are the Khovanov, Szabó, and Bar-Natan differentials.1

CKh(D) has two gradings. Let x ∈ CKh(D(I)) be a canonical generator. The
homological and quantum gradings of x are

h(x) = ‖I‖ − n−
q(x) = q̃(x) + ‖I‖+ n+ − 2n−.

Give H the (h, q)-grading (0,−2). Give W the (h, q)-grading (−1,−2).

Theorem ([9, 8]). dSz and dB are differentials of degree (1, 0) on CKh(D). They
commute (over F) so dSz + dBN is also a differential. The graded chain homotopy
types of (CKh(D), dSz), (CKh(D), dBN), and (CKh(D), dSz +dBN) are link invariants.

We write ∂ = dSz + dBN for the total differential. Write CSz(D) for the complex
(CKh(D), dSz) and CS(D) for the complex (CKh(D), ∂). One can recover other link
homology theories by setting U , W , or both to zero.

Let t and t′ be (n, 0)-tangles so that tt̄′ is a closed link. Given a link presented in
this way, define CS(tt̄′) to be the complex above but with q-grading shifted down by
n. might want to

move this
1Bar-Natan’s original construction did not consider configurations of dimension greater than 1

– B is defined in [8].
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4.1. Cobordisms. It will be important to understand how CS interacts with cobor-
disms of links. Let Σ ⊂ S3 × I be a cobordism from L0 to L1. Let D0 and D1

be diagrams for L0 and L1.2 Write Σ as a composition of elementary cobordisms:
cylinders, handle attachments, and planar isotopies. A diagrammatic 1-handle at-
tachment can be specified by a planar arc γ with its endpoints on D0. Orient this
arc. Put a crossing in D0 along γ and call the resulting diagram D. The 0-resolution
of the new crossing yields D0 and the 1-resolution yields D1. The differential on
CS(D) has a component which extends from CS(D0) to CS(D1). This is the map
assigned to the 1-handle attached along γ. Call it hγ.

0- and 2-handle attachments are much simpler. A 0-handle attachment adds a
crossingless, closed component to a diagram. It is easy to show that

CS(D0 ∪◦) ∼= CS(D0)⊗ CS(◦).
The 0-handle attachment map is the map CS(D0)→ CS(D) induced by

x 7→ x⊗ v+

on simple tensors. The 2-handle attachment map is the dual map induced by

x⊗ v− 7→ x.

In [7] we showed that CSz is functorial : diagrammatic descriptions of the same
cobordism (up to isotopy) induce chain homotopic maps. In fact, we showed that
any conic, strong Khovanov-Floer theory over F is functorial, and then we showed
that CSz constitutes a conic, strong Khovanov-Floer theory.3 CS is not a strong
Khovanov-Floer theory because it does not satisfy the Künneth formula:

CS(D
∐
D′) 6' CS(D)⊗ CS(D)

even thought they are isomorphic as F[U,W ]-modules. Also, if Σ and Σ′ are cobor-
disms from D0 to D1 and D′0 to D′1, respectively, then

CS(W ⊗W ′) 6' CS(W )⊗ CS(W ′).

Nevertheless, the proof of functoriality is valid, mutatis mutandis. CS satisfies every
other condition to be a conic, strong Khovanov-Floer theory. And if D′ is crossingless
– i.e. if CS(D′) has a vanishing differential – then

CS(D
∐
D′) ∼= CS(D)⊗ CS(D′).

The Künneth formula for diagrams is only ever used in [7] in this situation. The
Künneth formula for cobordisms is only used to prove the S, T , and 4Tu relations

2There is some subtlety here – see Section WHICH of [1] – but it is not relevant to this paper.
3We actually proved this about CSz with W = 1, but the proof extends to the polynomial version

without trouble.
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of [3]. One only needs to prove these relations for cobordisms of the form Id⊗W ′

where Id is the product cobordism D×I and W ′ is a cobordism of crossingless dia-
grams. In lieu of a Künneth formula, the cobordism maps satisfy the following:

FId
∐
W ′ = GW ′ ⊗ FW ′

where G depends in some way on the topology of W ′. The key observation is that FW ′
does not depend on the topology of D! So if FW ′ = 0, then FId

∐
W ′ = GW ′ ⊗ 0 = 0.

Therefore the S, T , and 4Tu relations hold for CS. Therefore the proof survives even
without the Künneth formula.

Theorem 4.2. CS is a functorial link invariant. The Reidemeister maps on CS are
described by Bar-Natan’s cobordism maps.

Nevertheless we will see in Section 27 that CS’s non-locality does make it more
difficult to work with. improveThe technical result, Proposition WHICH would be good to

restate this
of [7], underlying

the functoriality result has the following easy implication which will be useful in
Section ??.

Proposition 4.3. Let D be a link diagram. Suppose that D′ is a subset of D which
is planar isotopic to a (n, n)-tangle diagram. Suppose further that D′ is isotopic, as
a tangle, to the identity braid on n-strands.

Let R and R′ be two sequences of Reidemeister moves supported in D′ which trans-
form D′ into Idn. Call the resulting link diagram D′′. R and R′ induce maps

FR : CS(D)→ CS(D′′)
FR′ : CS(D)→ CS(D′′)

These maps are chain homotopic.

Proof. This holds for Bar-Natan’s cobordism-theoretic link homology invariant, [3].
See for example WHICH add. Theorem WHICH addof [7] implies that it holds for CS. �

5. Hyperboxes of chain complexes and A∞ algebras

This section good argument to
move all of this to
the end of the
paper, there’s no
topology

is dedicated to establishing the algebraic framework for our A∞-
algebras. This framework extends the hyperbox constructions developed by Manolescu
and Ozsváth in their mammoth paper on Heegaard Floer homology [5]. We show
that from a collection of hyperboxes satisfying some coherence conditions one can
build an A∞-algebra. Our goal is to prove Theorem 5.18 which says that this con-
struction is functorial (up to homotopy). Corollary ?? and Sections 5.1.2 and 5.3 are
new results which we believe will be useful in future work.
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To motivate the construction, let’s first consider how one might build a differential
graded algebra (dga) from a tri-plane diagram. Let

A(t) =
3⊕

i,j=1

CKh(tit̄j).

One can define a multiplication map

CKh(tit̄j)⊗ CKh(tj t̄k)→ CKh(tit̄jtj t̄k) ∼= CKh(tit̄k)

using the cobordism shown in Figure 5.

βi β̄j βj β̄k

βi β̄j βj β̄k

βi β̄k

Figure 5. A cobordism from tit̄j
∐
tj t̄k to tit̄k.

Extend this to a map

µ2 : A(t)⊗ A(t)→ A(t)

by linearity and the rule that µ2 is zero on summands like

CKh(tit̄j)⊗ CKh(tk t̄`), j 6= k.

It is not too hard (especially ignoring the gradings) to show that A(t), equipped with
the Khovanov differential and µ2, is a dga. Now suppose one wants to define a map

µ3 : A(t)⊗3 → A(t)
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which is a homotopy between µ2 ◦ (Id⊗µ2) and µ2 ◦ (µ2 ⊗ Id). (Actually those two
maps are equal, but forget that for a minute.) In cobordism-theoretic terms, µ3

represents an isotopy between the two cobordisms in Figure 6. In other words, it
shuffles b one-handle attachments past b other cobordisms. So it can be understood
as the coallation of b2 smaller homotopies.

βi β̄j βj β̄k βk β̄i

βi β̄k βk β̄i βi β̄j βj β̄i

βi β̄k

Figure 6. Two cobordisms from tit̄j
∐
tj t̄k

∐
tk t̄i to tit̄i.

Hyperboxes are a nice way to organize these homotopies. Abstractly, the situation
is this: suppose we have a trio of chain maps

f0 : C0 → C1

f1 : C1 → C2

f2 : C2 → C3.

(For example, consider µ2 with b = 3.) Consider the diagram

C0 →f0 C1 →f1 C2 →f2 C3.

This “factored mapping cone” contains at least as much information as the mapping
cone of f2 ◦ f1 ◦ f0. This is the definition of a one-dimensional hyperbox of chain
complexes. Now suppose we have some homotopies fi ' f ′i for each i. Every attentive
algebraic topology student knows that f2 ◦ f1 ◦ f0 ' f ′2 ◦ f ′1 ◦ f ′0, and can draw a map
between the factored mapping cones. What if these homotopies come with their own
factorizations? This is the case when we move b one-handles past b others. The
resulting structure is a two-dimensional hyperbox of chain complexes.
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5.1. Hyperboxes of chain complexes. Let d = (d1, . . . , dn) ∈ Zn≥0. Write E(d)
for the box with dimensions d and its initial corner at the origin. Write E(n) for
the n-dimensional box with dimensions (1, . . . , 1). We call E(n) the n-dimensional
hypercube.

Definition. An n-dimensional hyperbox of chain complexes of shape d is a collection
of graded chain complexes ⊕

δ∈E(d)

Cδ

and a collection of linear maps

Dε
δ : Cδ → Cδ+ε

with δ ∈ E(d) and ε ∈ En so that:
• If δ + ε /∈ E(d) then Dε

δ = 0.
• The map D0

δ : Cδ → Cδ is the differential on Cδ.
• The map Dε

δ has degree ‖ε‖ − 1.
• Each hypercube (of any dimension) is a chain complex. In other words,

(1)
∑

ε+ε′≤(1,...,1)

Dε′

δ+ε ◦Dε
δ = 0

for all δ ∈ E(d).

Informally, a hyperbox is a collection of cubical chain complexes stacked into a
box. It is important to note that the last condition on the maps is not “the sum
of all compositions is zero” – a hyperbox of complexes is not a chain complex. We
collect a hypercube into H = (C,D) where C =

⊕
Cδ and D =

⊕
Dε
δ. Here are

some examples.

A 0-dimensional hyperbox is a chain complex.

A 1-dimensional hyperbox of size (d) is a collection of chain complexes {Ci}di=0

and chain maps fi : Ci → Ci+1. In the above notation, C =
⊕d

i=0Ci and D =⊕d−1
i=0 fi. That the fi are chain maps is equivalent to equation 1.

A 2-dimensional hyperbox of size (d1, d2) is a collection of chain complexes {Ci,j}
for 0 ≤ i ≤ d1 and 0 ≤ j ≤ d2 along with maps

f
(1,0)
i,j : Ci,j → Ci+1,j (horizontal maps)

f
(0,1)
i,j : Ci,j → Ci,j+1 (vertical maps)

f
(1,1)
i,j : Ci,j → Ci+1,j+1 (diagonal maps)
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Equation 1 implies that the horizontal and vertical maps are chain maps. It also
implies that the diagonal maps are homotopies between

f i,j+1
H ◦ f i,jV

and

f i+1,j
V ◦ f i,j+1

H .

A hypercube of dimension n is a cubical chain complex with diagonal maps.
Such complexes underlie many spectral sequences in low-dimensional topology.

Let H = (C,D) be a hyperbox of chain complexes of shape d = (d1, . . . , dn).
Our standing notation will be that δ ∈ E(d) (a “coordinate vector”) and ε ∈ En (a
“direction vector”). It will be helpful to set some more vocabulary and conventions.
δ is called a corner if every coordinate in δ is either maximal or zero. In other words,
there is some ε ∈ En so that

δ = (d1ε1, . . . , dnεn).

We call δ (or the chain complex at δ) the ε-corner. We will sloppily append coor-
dinates to a vector by writing e.g. (δ, 1) for (δ1, . . . , δn, 1). Write ε0 and ε1 for the
all-zeroes and all-ones direction vectors. should we tho

Definition 5.1. Let 0H and 1H be hyperboxes of chain complexes. A map of
hyperboxes F : 0H → 1H is a hyperbox of size (d, 1) so that the δn+1 = 0 face of F
is 0H and the δn+1 = 1 face of F is 1H with grading shifted up by 1.

A map of hyperboxes of chain complexes is determined by the edges whose (n+1)-
st coordinate changes, i.e. a family of maps

F ε
δ : 0Cδ → 1Cε+δ

of degree ‖ε‖ satisfying

(2)
∑

(Dε
δ+ε′ ◦ F ε′

δ + F ε′

ε+δ ◦Dε
δ) = 0

for all ε ∈ E(d), all ε with (n+ 1)-st coordinate 0, and all ε′ with (n+ 1)-coordinate
1 so that ε + ε′ ≤ ε1. Conversely, a collection of maps from C to C ′ satisfying these
relations defines a map of hyperboxes.

Let F : 0H → 1H and G : 1H → 2H be maps of hyperboxes. Their composition
G ◦ F : 0H → 2H is defined by

(G ◦ F )εε0 : 0Cε0 → 2Cε0+ε(3)

(G ◦ F )εε0 =
∑
ε′≤ε

Gε−ε′
ε0+ε′ ◦ F

ε′

ε0(4)
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In terms of boxes: glue F and G together along their common face to obtain a
hyperbox of shape (d, 2). To obtain a hyperbox of shape (d, 1), compose all possible
combinations of maps in the (n + 1)-st direction. One can give similar definitions
for homotopies, homotopy equivalences, and quasi-isomorphisms in the category of
hyperboxes of chain complexes. In fact, if one thinks of two maps F and G as
hyperboxes, then a chain homotopy can be thought of as a map of these hyperboxes:

Definition 5.2. Let F, F ′ : 0H → 1H. A chain homotopy from F to F ′ is a hyperbox
J of size (d, 1, 1) so that δn+2 = 0 face of J is F , the δn+2 = 1 face of J is F ′, and
any edge map in the direction (0, . . . , 0, 1) is the identity map.

A map of zero-dimensional hyperboxes is the mapping cone of a chain map.

A map of n-dimensional hypercubes is an (n + 1)-dimensional hypercube, i.e.
the mapping cone of a map of cubical complexes. A chain homotopy of maps of
hypercubes is equivalent to a chain homotopy of chain maps of cubical complexes.

5.1.1. Compression. There is a recursive recipe called compression for building a
chain complex from a hyperbox of chain complexes. Let H = (C,D) be a hyperbox of

chain complexes of shape d = (d1, . . . , dn). Let Ĉ be the hypercube whose underlying

vector space is the sum of the corners of H. One can construct a differential D̂ on Ĉ

from H. The hypercube Ĥ = (Ĉ, D̂) is the compression of H. This recipe was first
described by Manolescu and Ozsváth. Presented below is an alternative view due to
Liu [?].

Let H be a one-dimensional hyperbox of shape (n). Define

Ĉ = C0 ⊕ Cn
D̂1

0 = fn−1 ◦ · · · ◦ f0

D̂0
0 = D0

0, D̂
0
1 = D0

n

and
Ĥ = (Ĉ, D̂).

Let H be an n-dimensional hyperbox with shape (d1, . . . , dn) and dn > 1. We can
think of H as dn hyperboxes of shape (d1, . . . , dn−1, 1) attached along faces. Label
these hyperboxes asHn,1, Hn,2, and so on. Each of these boxes is a map of hyperboxes
of dimension n− 1.

Definition 5.3. Define Hn to be

Hn = Hn,dn ◦ · · · ◦Hn,1.

Hn is the partial compression of H along the nth axis, or just the n-th partial com-
pression. It has shape (d1, . . . , dn−1, 1). If dn = 1, then Hn = H.
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Definition 5.4. Let H be an n-dimensional hyperbox. Define

Ĥ = Hn,n−1,...,1

In other words, Ĥ is the result of n partial compressions starting with the nth and

ending with first. Ĥ is a hypercube of dimension n.

Let’s describe Ĥ more explicitly for a two-dimensional hyperbox H. First suppose
that H of shape (d, 1). Then H2 = H, which we view as d maps of one-dimensional

hyperboxes. To compute Ĥ = H2,1, compose those maps. Clearly

D̂
(0,1)
(0,0) = D

(0,1)
0,0 .

Next,

D̂
(1,0)
(0,0) = D

(1,0)
d−1,0 ◦ · · · ◦D

(1,0)
1,0 ◦D

(1,0)
0,0

To understand D̂
(1,1)
(0,0) we study equation (4). The map is a sum of maps, one for each

path inH2 from the initial vertex to the terminal vertex. Such a path can only include
one diagonal edge – in fact, it’s totally determined by that vertex. Therefore we can

describe D̂
(1,1)
(0,0) by the schematic in Figure 7. The thick blue diagonal represents a

kind of step which can only appear once.

Figure 7

Now suppose instead that H has shape (d1, d2). Then H2 is a hyperbox of shape
(d1, 1). Each square in H2 is the compression of a hyperbox of size (1, d2). Therefore
its diagonal maps is given by Figure 8. Now apply the procedure above remembering
that the blue diagonal stands for this shape.

The result is that Ĥ has underlying space

C(0,0) ⊕ C(1,0) ⊕ C(0,1) ⊕ C(1,1).

The vertical (and horizontal) maps are compositions of vertical (and horizontal) maps
in H. The diagonal map is a sum of maps, one for each diagonal map in H. This
diagonal completely describes a path from (0, 0) to (d1, d2) of the shape in Figure 9.

Readers familiar with hyperboxes will recognize that this description of Ĥ agrees
with Manolescu and Ozsváth’s.

Proposition 5.5 ([?]). Liu’s definition agrees with Manolescu and Ozsváth’s.
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Figure 8

Figure 9

Now if G : H → H ′ is a map of hyperboxes, then Ĝ is a map Ĥ → Ĥ ′. Suppose
that F : H ′ → H ′′ is another map of hyperboxes. It would be nice if

F̂ ◦G = F̂ ◦ Ĝ.
But this formula is false. Write FG for the hyperbox given by gluing together F and
G along the appropriate faces so that (FG)n+1 = F ◦G and

F̂G = F̂ ◦G.
On the other hand, F̂ ◦ Ĝ is computed by first fully compressing both F and G. In
summary,

F̂ ◦ Ĝ = (FG)n,...,1,n+1

F̂ ◦G = (FG)n+1,n,...,1.

Nevertheless,

Lemma 5.6. F̂ ◦G ' F̂ ◦ Ĝ.
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Proof. Suppose that the theorem holds if H, H ′, and H ′′ are one-dimensional. Let
them instead be n-dimensional with n > 1 and suppose that the theorem holds
for (n − 1)-dimensional hyperboxes. We can think of each as a one-dimensional
hyperbox in the category of hyperboxes – a hyperhyperbox. At each vertex is an
(n− 1)-dimensional hyperbox of chain complexes. So we can think of FG as a two-
dimensional hyperhyperbox. The two ways to compress this hyperhyperbox yield
FGn+1,n and FGn,n+1. By hypothesis, these two are chain homotopy equivalent.

Now consider FGn. We can view this as again as a two-dimensional hyperhyperbox
of size (dn−1, 2). Now the vertices are compressed along the n-th axis and the maps
are adjusted accordingly. We see that FGn,n+1,n−1 is chain homotopy equivalent
to FGn,n−1,n+1. Continue n − 2 more times to prove the theorem. Manolescu and
Ozsváth’s algebra of songs keeps track of what happens to individual maps in this
process.

The two-dimensional claim is this: if FG is a hyperbox of size (d, 2) then FG2,1 '
FG1,2. If d = 1 there is nothing to show, so assume d > 1. The vertical and
horizontal maps agree, so we only need to study the two differential diagonal maps.
Call them p and q where p follows the scheme in Figure 7. Recall that these maps
are sums of maps along certain paths in the cube, one for each diagonal. Write pi,j
and qi,j for the terms in pi,j and qi,j which use the diagonal from the vertex (i, j).
Write hi,j for the map which uses the diagonals at both (i, 0) and (j, 1). (There is
only one such path because FG has height two.) Define

h =
∑
i<j

hi,j

so that

h(i,j),(k,`) ◦D(0,0)
(0,0) +D

(0,0)
(d,2) ◦ h(i,j),(k,`) =f

(1,0)
(d−1,2) ◦ · · · ◦ f

(1,0)
(j+1,2)

◦
(
f

(1,0)
(j,2) ◦ f

(0,1)
(j,1) + f

(0,1)
(j+1,1) ◦ f

(1,0)
(j,1)

)
◦ f (1,0)

(j−1,1) ◦ · · · ◦ f
(1,0)
(i+1,1)

◦ f (1,1)
(i,0)

◦ f (1,0)
(i−1,0) ◦ · · · ◦ f

(1,0)
(1,0) ◦ f

(1,0)
(0,0)

+

f
(1,0)
(d−1,2) ◦ · · · ◦ f

(1,0)
(j+1,2)

◦ f (1,1)
(j,1)

◦ f (1,0)
(j−1,1) ◦ · · · ◦ f

(1,0)
(i+1,1)
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◦
(
f

(1,0)
(i,2) ◦ f

(0,1)
(i,1) + f

(0,1)
(i+1,1) ◦ f

(1,0)
(i,1)

)
◦ f (1,0)

(i−1,0) ◦ · · · ◦ f
(1,0)
(1,0) ◦ f

(1,0)
(0,0)

This sum is easiest to understand in the visual calculus of Figure 10. From there it
is straightforward to see that

(5)
∑
i<j

h(i,j),(k,`) ◦D(0,0)
(0,0) +D

(0,0)
(d,2) ◦ h(i,j),(k,`) = p+ q

as in the proof of Stokes theorem from multi-variable calculus. �

+

=(
+

)
+

(
+

)
+(
+

)
=(

+

)
+

(
+

)
Figure 10. A graphical representation of equation (5). The dots rep-
resent application of the internal differential; in the musical vocabulary,
they are the result of playing {}.

Lemma 5.7. Suppose that F ' G are maps of hyperboxes. Then F̂ ' Ĝ.

Proof. Let J : F → G be the homotopy. Then Ĵ is the mapping cone of a chain map

Id +j : F̂ → Ĝ. Meanwhile F̂ and Ĝ are mapping cones of chain maps f and g. The

square of the differential on Ĵ is

Id ◦f + g ◦ Id +j ◦D +D ◦ j.
�

Corollary 5.8. Compression of hyperboxes is a functor from the homotopy category
of hyperboxes to the homotopy category of chain complexes.
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5.1.2. Two tensor products. A one-dimensional hyperbox is a mapping cone of a
factored chain map. For plain old chain maps f and g,

cone(f ⊗ g) 6= cone(f)⊗ cone(g).

Suppose that ⊗ is some kind of tensor product operation on hyperboxes. If F : H0 →
H ′0 and G : H1 → H ′1 are maps of hyperboxes – so F and G are hyperboxes – then
F ⊗ G is analogous to cone(f) ⊗ cone(G) rather than cone(f ⊗ g). Therefore there
are two different tensor products: ⊗ for hyperboxes in general and � for maps.

Let H be a hyperbox of chain complexes of dimension n and shape d. Let H ′ be
a hyperbox of chain complexes of dimension n′ and shape d′. Define H �H ′ to be
the hyperbox of dimension n+ n′ and shape (d,d′) whose underlying space is

(C ⊗ C ′)(δ,δ′) = Cδ ⊗ C ′δ′ .
and whose maps D⊗ are defined as follows:

D
⊗,(ε,ε′)
(δ,δ′) =


Dε
δ ⊗ IdH′

δ′
ε′ = (0, . . . , 0)

IdHδ ⊗D′ε
′

δ′ ε = (0, . . . , 0)

0 otherwise

Lemma 5.9. H ⊗H ′ is a hyperbox.

Proof. Each cube of H⊗H ′ is the ordinary tensor product of cubical complexes. �

Lemma 5.10. (1) H ⊗ (H ′ ⊗H ′′) = (H ⊗H ′)⊗H ′′.
(2) Ĥ ⊗H ′ = Ĥ ⊗ Ĥ ′. Equivalently, the differential on Ĥ ⊗H ′ has form D̂ ⊗

Id
Ĥ′ + IdĤ ⊗D̂′.

Proof. The first assertion is a straightforward verification in the spirit of Lemma 5.9.

The underlying groups of Ĥ ⊗H ′ and Ĥ ⊗ Ĥ ′ are identical. The differential on
H ⊗H ′ can be written

D⊗ = Id⊗D′ +D ⊗ Id

where D is the differential on C and D′ is the differential on C ′. We claim this holds
for (H ⊗H ′)m+n,...,k with 0 ≤ k ≤ m + n. Suppose it holds for k = i. To construct
the next partial compression, one thinks of the boxes in the (i − 1)st direction as
maps of hyperboxes and composes them. This direction belongs to either H or H ′.
By hypothesis, all of the maps have the form

IdH ⊗g
or

f ⊗ IdH′ .

It follows that the differential on the fully compressed hyperbox has form Id⊗D′ +
D ⊗ Id. �
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Any chain complex (C ′, d) can be thought of as a zero-dimensional hyperbox.
Therefore H ⊗ C ′ is a hyperbox with the same shape as H and

(C ⊗ C ′)δ = Cδ ⊗ C ′

D⊗,εδ =

{
D0
δ ⊗ d ε = ε0

Dε
δ ⊗ Id otherwise

Let F : H0 → H ′0 and G : H1 → H ′1 be maps of hyperboxes with shapes (d, 1) and
(d′, 1), respectively. Define F �G to be the map H0 ⊗H1 → H ′0 ⊗H ′1 defined by

(F �G)
(ε,ε′)
(ε2,ε3) = F ε

ε2
⊗Gε′

ε3
.

Lemma 5.11.

(1) If F and G are maps of cubical complexes, then F � G is the usual tensor
product of chain maps.

(2) F �G really is a map of hyperboxes.
(3) (F �G) ◦ (F ′ �G′) = (F ◦ F ′) � (G ◦G′).
(4) Id� Id = Id.

(5) F̂ �G is a map from Ĥ0 ⊗ Ĥ1 to Ĥ ′0 ⊗ Ĥ ′1.

(6) As a map of chain complexes, F̂ �G = F̂ ⊗ Ĝ.

Proof. The first statement is clear. The second holds because each cube which ends
in the mapping direction is clearly a cube. The third and fourth also follow from
thinking cube-by-cube. The fifth follows from the second point of Lemma 5.10. The
sixth is essentially a consequence of the fact that

(f ⊗ f ′) ◦ (g ⊗ g′) = (f ◦ g)⊗ (f ′ ◦ g′)
for linear maps. �

5.2. A∞-algebras. See [?] for a nice introduction to A∞-algebras and [?] for an
exhaustive resource. We avoid tricky sign conventions by working over F.

Definition. An A∞-algebra (over F) A is a Z-graded vector space, also called A,
and a collection of maps

µk : A⊗k → A, k ≥ 1

of degree 2− k which satisfy, for each n ≥ 1, the An-relation:

(6)
∑

i+j+k=n

µi+1+k

(
Id⊗i⊗µj ⊗ Id⊗k

)
.

A is unital if there is an element ι ∈ A so that
• µ1(ι) = 0.
• µ2(ι, x) = µ2(x, ι) = x for all x ∈ Ã.
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• Let x ∈ Ã⊗k be a simple tensor of length greater than two with a factor of ι.
Then µk(x) = 0.

For n = 1, equation (6) simply states that µ1 is a differential on A. For n = 2, it
implies that the multiplication µ2 is a chain map. The n = 3 version implies that µ3

is a chain homotopy between µ2 ◦ (µ2⊗ Id) and µ2 ◦ (Id⊗µ2). So A has the structure
of a dga up to homotopy. In particular, if µi = 0 for i > 2, then A can be thought
of as a dga.

Definition. Let A and B be A∞-algebras. A map of A∞-algebras is a collection of
maps

fk : A⊗k → B
of degree 1− k which satisfy, for each n ≥ 1,

(7)
∑

i+j+k=n

fi+1+j

(
Id⊗i⊗µj ⊗ Id⊗k

)
=

∑
i1+···+ir=n

µr (fi1 ⊗ · · · ⊗ fir) .

The identity map is the map with f1 = Id and fi = 0 for i > 1.
If f : A → B and g : B → C are maps of A∞-algebras, their composition (g ◦ f) is

defined by

(g ◦ f)n =
∑

i1+···+ir=n

fr(gi1 ⊗ · · · ⊗ gir).

Definition. Let f, g : A → B be maps of A∞-algebras. A homotopy between f and
g is a collection of linear maps

hk : A⊗k → B
so that

fn − gn =
∑

i1+···+ir+k+j1+···+js=n

µr+1+s(fi1 ⊗ · · · ⊗ fir ⊗ hk ⊗ gj1 ⊗ · · · ⊗ gjs)(8)

+
∑

a+b+c=n

ha+1+c(Id
⊗a⊗µb ⊗ Id⊗c)(9)

A map which is homotopic to the identity map is called a chain homotopy equivalence.

5.3. From hyperboxes to A∞-algebras. From a collection of hyperboxes one can
construct an A∞-algebra. Below we describe the construction and prove some func-
toriality properties.

First, some notation for sequences and subsequences. Let s = (s0, . . . , sk+1) be a
sequence of natural numbers. Write |s| for the length of k + 2. Let {Cij : i, j ∈ N}
be a collection of chain complexes. Set

Cs = Cs0s1 ⊗ Cs1s2 ⊗ · · · ⊗ Csksk+1
.
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So we will often think of s as the sequence of pairs ((s0, s1), (s1, s2), . . . , (sk, sk+1)).
Write s′ ⊂ s if s′ is a subsequence of s, i.e. there is an order-preserving injection

s′ ↪→ s. There is a bijection between subsequences containing s0 and sk+1 and 0-1
sequences of length k − 1: for a 0-1 sequence ε, the subsequence s(ε) ⊂ s includes si
precisely if εi = 0. With these conventions,

s((0, . . . , 0)) = s

s((1, . . . , 1)) = (s0, sk + 1).

Let ε and ε′ be two 0-1 sequences so that ε < ε′. Consider each maximal contiguous
subsequence of 0s in ε which do not appear in ε′. For example, in

ε = (0, 1, 0, 0, 1, 0, 1, 0, 0, 0)

ε′ = (1, 1, 1, 0, 1, 0, 1, 0, 1, 1)

the maximal subsequences are underlined. Let c(ε, ε′) be the set which contains, for
each underlined sequence, all the corresponding elements of s and the surrounding
ones. For example,

s = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

s(ε) = (1, 2, 4, 5, 7, 9, 10, 11, 12)

s(ε′) = (1, 5, 7, 9, 12)

c(ε, ε′) = ((1, 2, 4), (4, 5, 7), (9, 10, 11, 12))

We call c(ε, ε′) the contraction sequence of ε and ε′. The fixed sequence f(ε, ε′) of ε
and ε′ is a sequence of pairs of elements from s(ε). Its elements are contiguous pairs
of elements of s(ε) which do not appear in c(ε, ε′). So in the running example,

f(ε, ε′) = ((7, 9)).

For a sequence s = (s0) of length one, define Cs = (s0s0).

5.3.1. Systems of hyperboxes.

Definition 5.12. Let C = {Ci,j} be a collection of chain complexes indexed by
N×N. A system of hyperboxes over C, H is an assignment of a (k− 1)-dimensional
hyperbox Hs to each sequence s with |s| = k satisfying the following properties:

• The ε-corner of Hs is Cs(ε).
• Let F be the face of Hs between the ε- and ε′-corners. Then

F =

 ⊗
c′∈c(ε,ε′)

Hc′

⊗
 ⊗
f ′∈f(ε,ε′)

Cf ′


We call Hc(ε,ε′) the active part of F and Cs(ε′/ε)c the passive part.
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Observe that the initial corner of Hs is Cs and the terminal corner is Cs0sk . The
second bullet point is the face condition. It’s a locality condition for the component
maps – maps which combine one part of a tensor product (e.g. chain complexes
assigned to disjoint unions of links) should not affect the other parts.

Let x ∈ C⊗k+1 be a simple tensor. We say that x is admissible if

x ∈ Cs
for some s. We say that s is the underlying sequence of x. It will be helpful to write

Hx = Hs. Let µk(x) ∈ Ci0,ik+1
be the image of x under the longest diagonal on Ĥx.

Extend linearly to obtain a map

µk : C⊗k → C

for k ≥ 1. If x is not admissible, then set µk(x) = 0.

Proposition 5.13. (C, {µi}) is an A∞-algebra.

For a system of hyperboxes H we call this A∞-algebra Ã(H).

Proof. Suppose first that x is admissible of length k. Write s for the sequence un-

derlying x. Every diagonal from the origin of Ĥx corresponds to a 0-1 sequence ε
therefore to a contraction sequence c(ε0, ε). If this sequence has more than one el-
ement, then the corresponding diagonal map vanishes because of the condition of

faces of a system of hyperboxes and Lemma 5.10. Therefore the differential on Ĥx

is a sum of the form ∑
Id⊗µ⊗ Id .

The component of D̂2 which maps to (1, . . . , 1)-corner of Ĥx is∑
i,j

µk−j+1 ◦
(

Id⊗i⊗µj ⊗ Id⊗(k−i−j)
)

= 0.

This is precisely Equation 6. If x is not admissible, then(
Id⊗i⊗µj ⊗ Id⊗(k−i−j)

)
(x)

is admissible only if µj is applied to a non-admissible simple tensor. So

µi+1+k−j

(
Id⊗i⊗µj ⊗ Id⊗(k−i−j)

)
(x) = 0

one way or another.
Lastly, it must hold that the degree of µi is i − 2. µi is computed from the

compression of an (i − 1)-dimensional hyperbox. The compression of a hyperbox is
a hyperbox, so it’s diagonal has degree i− 2. �
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This construction constitutes a functor between the homotopy category of systems
of hyperboxes of chain complexes and the homotopy category of A∞-algebras. Let’s
construct the former category.

Definition 5.14. Let H and H′ be systems of hyperboxes over C and C ′ so that
Hs and H ′s have the same shape for all s. A map of systems of hyperboxes, g, is a
collection of maps of hyperboxes

Gs : Hs → H ′s

which satisfies the following face condition. Let F be the (ε, ε′)-faces of Hs. Then
Gs must satisfy

Gs|F =

(
ò

s′∈c(ε,ε′)
G′s

)
�

(
ò

f ′∈f(ε,ε′)

Gf ′

)
Note that for f ′ ∈ f(ε, ε′), Gf ′ : Cf ′ → C ′f ′ is (the mapping cone of) an ordinary
chain map. In other words, Gs acts on the passive part of Hs by chain maps.

For any H there is an identity map Id: H → H where Gs is the identity map for
all s.

Definition 5.15. Let G : H → H′ and G′ : H′ → H′′ be maps of systems of hyper-
boxes. Define

(G′ ◦G)s = G′s ◦Gs.

Lemma 5.16. Definition 5.15 actually defines a map of systems

(G′ ◦G) : H → H′′

and (Id ◦G) = G and (G ◦ Id) = G.

Definition 5.17. A chain homotopy between maps of systems G and G′ is a collec-
tion of hyperboxes

Js : Gs → G′s
whose length one maps are identity maps and which also satisfies the following face
condition. Let F be a face of Js in which the last component changes. Suppose that,
restricting the last coordinate to zero, F is the (ε, ε′) face of Gs. Then

(10) Js|F =

 ò

s′∈c(ε,ε′)
s′=(s′′1 ,...,sr)

r⊕
i=1

(
Fs′′1 � · · ·� Fs′′i−1

� Js′′i �Gs′′i+1
� · · ·�Gs′′r

)⊗ Id .

A map of systems g : H → H′ induces a map of A∞-algebras Ã(g) : Ã(H) →
Ã(H′) in the following way. Let x ∈ Ã(H) be a simple tensor of length n. There is
a corresponding map of hyperboxes Gx : Hx → H ′x. Define gn(x) to be the image of
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x under the longest diagonal map on Ĝx. Extend gn to all of C⊗n by linearity. We
aim to show that {gn}∞n=1 satisfies Equation 7.

Consider the differential on Ĝx. Its restriction to the initial vertex of Ĝx can be
written as

G̃+ µ̃

where G̃ is the sum of all the G-wards maps and

µ̃ =
∑
i,j,k

Id⊗i⊗µj ⊗ Id⊗k

The component of the square of this map which goes to the terminal vertex of Ĝx is

G̃ ◦ µ̃+ µ̃ ◦ G̃ =
∑
i

gi ◦ µ̃+ µr

( ∑
i1+···+ir=n

gi1 ⊗ · · · ⊗ gir

)
where

G̃ =
∑

j1+···+jq=k

gj1 ⊗ · · · ⊗ gjq

by Definition 5.14 and Lemma 5.11, part 6.

Theorem 5.18. Proposition 5.13 and the construction above define a functor from
the homotopy category of systems of hyperboxes to the homotopy category of A∞-
algebras.

Composition of maps A∞-algebras is, fittingly, only associative up to homotopy.
The homotopy category is an honest category.

Proof. Proposition 5.13 and the discussion above the theorem define the maps on
objects and morphisms. We need to prove the following:

Suppose that f and g are chain homotopic maps of systems of hyperboxes. Let Js
be the homotopy between Fs and Gs. Let x ∈ Cs be a simple tensor. Define jn(x) to

be the longest diagonal map on Ĵx applied to x. These maps satisfy equation 8 by
Definition 5.17 and Lemma 5.11. If x is inadmissible then equation 8 holds by the
same argument as Proposition 5.13. Therefore f is A∞-chain homotopic to g.

Let g and g′ be maps of systems so that g′ ◦ g is defined. The map of A∞-algebras
induced by G′ ◦G is A∞-chain homotopic to g′ ◦ g by from Corollary 5.8, Definition
5.14, and Lemma 5.11, part 6.

It is straightforward to check that the identity map of systems induces the identity
map of A∞-algebras. �

Remark 5.19. For the sake of concreteness, this section only discussed systems of
hyperboxes in which summands are indexed by pairs of natural numbers, but of
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course one could repeat the construction over any set. In the next section we will
work with pairs of crossingless matchings.

Remark 5.20. For inadmissible x we defined µk(x) = 0 for lack of better options. It
might seem more natural to say that multiplication is not even defined on x. This
amounts to constructing an A∞-category rather than A∞-algebra. One ought to
be able to adapt all the definitions of this section to build an A∞-category from a
system of hyperboxes in which the objects are natural numbers, Hom(i, j) = Ci,j,
and composition is given by the multiplication maps. Maps of systems induces A∞-
functors, and so on.

There is another way in which two systems of hyperboxes could yield homotopy
equivalent A∞-algebras. Here is what we have in mind: suppose that f ' g. It may
hold that f = f1 ◦ f0 and g = g1 ◦ g0, but there is no way to fill in the diagram

diagram
So the compressions of these (one-dimensional) hyperboxes are homotopy equiva-

lent, but the hyperboxes themselves are not.

Definition 5.21. Let H and H′ be systems of hyperboxes over C. Suppose that
these is an integer ` so that

• Cs = C ′s for all s.
• If s does not contain `, then Hs = H ′s.
• If s contains `, then think of Hs and H ′s as a sequence of maps glued together

along the dimension containing `. The composition of these maps is chain
homotopic by a homotopy so that

– the homotopy vanishes on any tensor product whose underlying sequence
does not contain `.

– the restriction of the homotopy to any subsequence agrees with the ho-
motopy on that subsequence.clarify, this should

be like any of the
other face
conditions

We say that H and H′ are internally chain homotopic.

Proposition 5.22. If H and H′ are internally homotopic, then Ã(H) ' Ã(H′).

Proof. We will define a map f of algebras. Let x be a simple tensor of length k whose
sequence s does not contain `. Define

fk(x) =

{
x k = 1

0 otherwise
.

In other words, f looks like the identity map when ` /∈ s.
Now suppose that the last occurrence of ` in s is at the ith entry. The key

observation is that Hk,...,i+1
s and H ′k,...,i+1

s are homotopic as maps of hyperboxes.
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This follows from the functoriality of compression. this is the key
point, improve a
bit

So there is a map

Fs : Hk,...,i+1
s → H ′k,...,i+1

s

whose length one edges are the identity. With the assumption that all the chain
complexes are finite-dimensional, a standard argument shows that Fs has an inverse
Gs up to homotopy. It follows that

Hk,...,i+1
s ' H ′k,...,i+1

s

as hyperboxes. Let fs be the longest diagonal map in F̂s. By our previous arguments
and the second condition on the homotopy, the sum of all the fs defines a map f
of A∞-algebras. Let g be the reverse map defined by hyperboxes Gs. We have
Gs ◦ Fs ' Id. It follows that g ◦ f ' Id.

Now we check that Hk,...,i+1
s and H ′k,...,i+1

s satisfy the conditions of Definition 5.21.
The first two conditions are clear.

�

6. A trisection class invariant

Definition 6.1. Let t be a tri-plane diagram. We say that t is in plat form if all
three tangles are planar isotopic to half-plat closures of braids.

Every (n, 0)-tangle is isotopic (but not necessarily planar isotopic) to a half-plat
closure. Therefore every trisection diagram may be put into plat form.

6.1. The system of hyperboxes.

Definition 6.2. Suppose that t is a tri-plane diagram in plat form. The canonical
surgery arcs on

titj
∐

tjtk

are the arcs connecting the plats in tj and tj, oriented towards tj. Number these arcs
with 1 to n from top to bottom. For a diagram of the form

ti1ti2
∐

ti2ti3
∐
· · ·
∐

tiktik+1

There are (k − 2) families of canonical surgery arcs, defined similarly. They are the
red, dotted arcs in Figure 11.

Let t = (t1, t2, t3) be a bridge trisection diagram in plat form. Let s = (s1, . . . , sk+1)
be a sequence of length k + 1 ≥ 2 in {1, 2, 3}. Define

Ds = (ts1ts2)
∐

(ts2ts3)
∐
· · ·
∐

(tsk−1
tsk+1

).

For simplicity, let us first consider a tri-plane diagram in plat form with no crossings.
(This implies that each tangle is the plat closure of the identity braid, but we won’t
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βi1 β̄i2 βi2 β̄i3 βik β̄ik+1

n

2

1

n

2

1

n

2

1

Figure 11

use that fact.) If |s| = 2, then set Hs = CSz(Ds). If |s| > 2, then there are k − 2
families of canonical surgery arcs on Ds, each with n arcs. For each coordinate

δ = (d1, . . . , dk−2) ∈ [0, n]k−2

there is a diagram Ds,δ given by performing surgery along the first di arcs in the i-th
family. For example, Ds,(0,...,0) = Ds and Ds,(1,...,1) = ts1tsk . Let

Cs =
⊕

ε∈[0,n]k−2

CSz(Ds,δ).

Fix a coordinate δ. A direction vector ε from δ picks out ‖ε‖ canonical arcs: for each
εi = 1, take the (δi+ 1)-st arc from the ith collection. In other words, use the “next”
arcs in each axis with a 1.

Let Cs,δ,ε be the configuration whose underlying diagram is Ds,δ and whose deco-
rations are the arcs picked out by ε. Set

Dε
δ : CSz(Ds,δ)→ CSz(Ds,δ+ε)

Dε
δ = SCs,δ,ε

Ds =
∑
δ,ε

Dε
δ.

The (δ, ε)-cube in Cs is the Szabó complex of the link given by replacing each dec-
oration from ε with a positive crossing. So Hs = (Cs, Ds) is actually a hyperbox of
chain complexes.

When t has crossings, there are two additional complications. First, the diagram
Dsε1 is isotopic to s1sn but not equal to it. This isotopy may always be realized by a
sequence of Reidemeister 2 moves which cancel inverse Artin generators. For a fixed
braid word βi order these from the inside out: if β = σi1 · · ·σij , then

β−1β = σ−1
ij
· · · σ−1

i1
σi1 · · ·σij .

and the first cancellation is between σ−1
i1

and σi1 .
Suppose that the braid word underlying si has length `i. Write `i for the length of

the braid word underlying si. Form a (k− 1)-dimensional hyperbox of link diagrams
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of size

(n+ `i1 , . . . , n+ `ik−1
).

For each coordinate δ = (d1, . . . , dk−1) there is a diagram Ds,δ given as follows: if
di ≤ n, then perform surgery along the first ei canonical arcs between si+1 and si+2,
just as in the crossingless case. If ei = n + mi with `i ≥ mi > 0, then perform all n
surgeries, then perform the first mi Reidemeister 2 moves on the result. Ds,δ is the
result of all these alterations to D. Set

Cs =
⊕

ε∈(d1+c1,...,dn+cn)k−2

CSz(Ds,ε).

Suppose that all of the coordinates of δ are less than n. The (δ, ε)-cube defines a
diagram Dδ,ε by replacing the definitions with positive crossings. Define the edge
maps on the (δ, ε)-cube so that the cube is the CSz complex of Dδ,ε. This is the
second complication: the edge maps include not just the decorations picked out by
ε, but any number of the decorations from the crossings of tsitsi+1

.
If δ has some coordinates greater than or equal to n, then ε may pick out Reide-

meister 2 moves in addition to arcs. The map assigned to a Reidemeister 2 move on
CSz is a sum of many configuration maps, see Section ??. did we actually

say this? easy
enough to add

The map Dε
δ is given by

adding superimposing improvethese configuration maps and surgery arcs.

Proposition 6.3. Let t be a tri-plane diagram in plat form. The recipe above defines
a system of hyperboxes of chain complexes H(t) over don’t think this is

the right vocab

C =
3⊕

i,j=1

CSz(titj).

Proof. First we show that Hs is actually a hyperbox for any s. To do so, we show
that the (δ, ε)-cube is a chain complex. If ε does not pick out any Reidemeister 2
moves then the cube is a CSz complex by definition.

So suppose that ε picks out some Reidemeister 2 moves. These moves have disjoint
support, and therefore the maps associated to the commute up to homotopy. In [7] we
showed that this homotopy is precisely described by the diagonals in the (δ, ε)-cube.

improve someTherefore this cube is a chain complex.
Now let’s check that the assignment s 7→ Hs defines a system. It is clear that the

construction satisfies the first condition. The second follows from the extension rule
and the disconnected rule. Let F be the face of Hs between the ε and ε′ corners.
The extension rule implies that the map assigned to a handle attachment along a
canonical surgery arc acts as the identity on the fixed sequence of s. Let c and c′

be distinct subsequences in c(ε, ε′). Let γ and γ′ be canonical surgery arcs which
are attached as part of c and c′, respectively. A configuration in F involving both γ
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and γ′ can never be connected. This implies that Hs satisfies the face condition, cf.
Lemma 5.10, part (2). �

Definition 6.4. Let Ã(t) be the A∞-algebra over F[W ] constructed from Proposition
5.13, Proposition 6.3, and the discussion above. The underlying group is

3⊕
i,j=1

CSz(titj).

For y ∈ Cs, µk(y) is the image of y under the longest diagonal map of Ĥs applied to
y.

The argument above applies to any conic, strong Khovanov-Floer theory with a
vanishing differential on flat diagrams. One can rephrase the construction of Hs

in terms of iterated mapping cones of one-handle attachment maps and Reidemeis-
ter 2 moves, and the argument of Proposition 6.3 holds word for word. The only
part of argument which uses the language of Szabó homology is the extension rule,
which holds up to homotopy for any strong Khovanov-Floer theory. If the internal
differential vanishes, it holds on the nose. The upshot is that we can construct an
A∞-algebra with underlying vector space

3⊕
i,j=1

CSz(tit̄j)

and with multiplications given as above even for the Heegaard Floer homology of
branched double covers (with the right choice of Heegaard diagrams.)

6.2. The simplest example. Let us compute Ã(t) in the case that t is the flat,
bridge number 1 tri-plane diagram for the unknotted sphere in S4. We call this
algebra I. Each summand of Ã(t) has rank two and µ1 = 0.

Let x be a simple tensor of length k. There is a hyperbox Hx underlying µk(x).
The active part of any connected configuration which appears in Hx consists of some
circles connected to each other in a line. The map assigned to such a configuration
is zero (as long as the dimension is greater than one). The map assigned to a discon-
nected configuration is zero. We conclude that there are no non-zero configurations
of dimension greater than one, and therefore all diagonal S maps in Hx are zero. It
follows that µk = 0 for k > 2.

Suppose that t is the disjoint union of n copies of the 1-bridge unknot. The
argument above, along with the Disconnected Rule for Szabó homology, implies that
the higher Szabó maps all vanish. It is interesting to note that these configurations
are trees and therefore have non-trivial maps under B.
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7. Invariance of the algebra

Our goal in this section is to prove the following.

Theorem 7.1. Let Σ be bridge-trisected surface in S4. Let t be a tri-plane diagram
in plat form for Σ. The A∞-chain homotopy type of Ã(t) is an invariant of the
trisection class of t.

Proof. We will prove something slightly stronger: let t′ be a tri-plane diagram, not
necessarily in plat form, for Σ. Let t be a Reidemeister-equivalent diagram in plat
form. In the remainder of this section, we show that Ã(t) is invariant under

• braid isotopies (Proposition 7.2).
• Hilden moves (Proposition 7.3).
• interior Reidemeister moves and bridge sphere transpositions (Proposition

7.4).
The upshot is that one may think of the invariant as the assignment t′ 7→ Ã(t), even
if t′ is not in plat form.

Observe that, by restricting to plat form, the only interior Reidemeister moves to
worry about are Hilden moves and braid isotopies. But of course those are covered by
the first two bullets. So in the third, we only consider bridge sphere transpositions.

�

Proposition 7.2. Let β and β′ be braid words which represent equal elements of

B2b. Let t = (β̆1, β̆2, β̆3) and t′ = (β̆′1, β̆2, β̆3). Ã(t) is chain homotopy equivalent to
Ã(t′).

Proof. It suffices to prove the theorem in the case that β and β′ differ by a single
braid commutation, braided Reidemeister 2 move, or triple-point move.

We begin with braid commutation. Consider the systems H(t) and H(t′). If s
does not include 1, then Hs = H ′s. If it does, then the maps on corresponding edges
are identical except that the order of the two Reidemeister moves has been swapped.
Proposition 4.3 implies that H(t) and H(t′) are internally homotopic. (Rather than
applying Proposition 3.3, one can just write down, in terms of cobordisms, a ho-
motopy which shows that the order of two disjoint Reidemeister 2 moves doesn’t
matter.) Proposition 5.22 implies that Ã(t) ' Ã(t).

Now suppose that β and β′ differ by a single braided Reidemeister 2 move. Without
loss of generality suppose that β′ has two more crossings than β, and call the added
crossings new. Let s be a sequence which contains 1. Then Hs′ is larger than Hs: any
axis which corresponds to 1 is two units longer than the same axis in Hs because it
has to undo the new crossings. The other segments of Hs′ all correspond to segments
of Hs in an obvious way. Add elementary extensions to Hs so that it has the same
shape as Hs′ and so that corresponding pieces line up. Call the extended box Hs.
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Define a map ρs : Hs → H ′s cube-by-cube as follows. Let C and C ′ be correspond-
ing cubes of Hs and H ′s. Then either

• Neither C nor C ′ involves a undoing any crossings. In other words, C and C ′

differ only by one or zero Reidemeister 2 moves. Away from the supports of
these moves the cobordisms in the cubes are identical. In other words, C and
C ′ are Szabó complexes of link diagrams which differ by some Reidmeiester
2 moves. Define ρs|C to be the composition of all the Reidemeister 2 maps.
• C and C ′ do involve undoing some crossings, but not the new ones. Then C

and C ′ are (iterated) mapping cones of Reidemeister 2 maps on links which
differ by a Reidemeister 2 move. Define ρs|C to be the cone of the new Rei-
demeister 2 map on the mapping cone. (In other words, iterate the mapping
cone again).
• C ′ undoes one of the new crossings. Then define ρs|C by the schematic in

Figure 12.

Two R2s

Id

-R2

R2

Id

-R2

Id

Figure 12

Figure 12 deserves a little more discussion. The vertical direction is the map-
ping direction. The horizontal axis should be thought of as a horizontal axis which
corresponds to a 1 in s. Each horizontal arrow represents a map of cubical chain
complexes, for example a Reidemeister 2 map on the Szabó chain complex of some
link. The vertical arrows are defined in the same way. The maps assigned to the
moves in Figure 12 commute up to homotopy because they commute cubewise. These
homotopies are the dotted arrows. They are also defined via handle attachments and
therefore can be extended to the Szabó complex of any link diagram. It follows that
the schematic defines a map of hyperboxes.

Define ρ′s by reversing all the Reidemeister 2 maps in bullet points above. We must
show that ρs and ρ′s constitute maps of systems. The following principle will apply
more generally. ρs is defined as the conglomeration of cobordism maps. (Remember
that Reidemeister maps are cobordism maps.) Suppose that, on some cube C, ρs
applies two Reidemeister 2 maps which are applied to disjoint links. By the dis-
connected rule, every configuration which uses one-handles from both maps is zero.
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Therefore ρs splits as the box product of two cubes the two Reidemeister 2 moves
applied separately. It follows that ρs defines a map of systems ρ and similarly for ρ′s.
ρs ◦ρ′s ' Id by a chain homotopy Js. Let’s construct this Js more explicitly. First,

if Ds is unchanged by the Reidemeister 2 moves, then ρs and ρ′s are identity maps
and Js = 0. If s has a one-element contraction sequence, then define Js|F on the
cube C as the homotopy between ρs|C ◦ ρ′s|C and IdC .

If F has a larger contraction sequence, then define Js|F by equation 10 with Fs′′i =
(ρ′ ◦ ρ)s′′i and Gs′′i+1

= Ids′′i+1
. If Js is actually a homotopy between (ρ′ ◦ ρ)s and Ids,

then it induces a homotopy between ρ′ ◦ ρ and Id, completing the proof. So all we
need to show is that Js is a hyperbox with length one maps equal to the identity.
Both parts are clear.

The triple point move is similar but with an additional wrinkle. Define ρs cube
by cube as above. If s does not contain 1 then ρs = Id. For other s, note that
Hs and H ′s have the same size. Call the crossings affected by the triple point move
altered. It is straightforward to define maps between cubes which do not undo altered
crossings. The difficulty is that the Reidemeister 3 move shuffles the order of the
altered crossings.

To correct for this, insert into Hs an elementary extension on each axis which
involves the altered crossing right before the altered crossings. Consider the hyperbox
H ′′s in which the elementary extension is changed to a pair of Reidmeister 3 moves
on the affected crossings and the maps after the extension are changed to agree with
those of H ′s. By Proposition 4.3, H ′′s ' Hs and therefore the systems Hs and H ′′s are
internally homotopic.

Extend H ′s by the identity along each altered axis right before the altered crossings
are undone. Construct a map ρ : H ′s → H ′′s using the Reidemeister 2 recipe: if
corresponding cubes C and C ′ do not involve undoing altered crossings, then define
ρs|C using the Reidemeister 3 maps. For cubes which undo altered crossings, the
diagrams actually agree (near those crossings) and so the map can be defined using
the same recipe. In the extended region, the map is quite simple, see the two-
dimensional schematic in Figure 13.

�

Proposition 7.3. Suppose that β̆ and β̆′ differ by a Hilden move. Let t = (β̆, β̆2, β̆3)

and t′ = (β̆′, β̆2, β̆3). Ã(t) is chain homotopic to Ã(t′).

Proof. Suppose that β and β′ are not equal as braids, but nevertheless β̆ is isotopic
to β̆′. Lemma 2.1 implies that there is some h ∈ Hn so that βh is isotopic to β′.
There is a diagrammatic cobordism

β̆ → β̆h
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R3

R3

Id

Id

Figure 13. The schematic for the map ρ in the extension region. The
top is H ′′ and the bottom is H ′. In this case the square is commutative
on the nose so no homotopy is necessary.

whose support is disjoint from β; this follows from the motion group interpretation
of Hn. This cobordism is the composition of a sequence of Reidemeister moves, so
it induces a chain homotopy equivalence on all the relevant Szabó chain groups.

It suffices to consider the case in which h is one of Tawn’s generators. The support
of each generator is a small neighborhood of the plats, so the crossings they add will
always be canceled first. Write H ′ for the system underlying Ã(t′). The new crossings
are the first to be canceled. The Reidemeister 2 moves have support disjoint from
all the canonical surgery arcs (except for the ones which are pushed around by the
Hilden move). Let H ′′ be the system which is identical to H ′ except that the new
unwindings are moved to be right after those handle attachments. H ′′ is internally
chain homotopic to H ′.

Now extend Hs by the identity so it has the same shape as H ′′s and so that the
extensions lie over the cancellations of the new handles. We will refer to the result
as Hs. We cook up a map for each of Tawn’s generators. The map will always be the
identity in the region “after” the new crossings have been canceled. The map will
be a composition of Reidemeister moves which realize the Hilden move in the region
“before” the relevant plats are connected. So the only challenge is to define the map
in the region in which the relevant plats are connected and the new crossings are
canceled.
ti is the easiest. The downwards maps are the obvious Reidemeister maps. Con-

sider the cobordism h ◦ r, using the notation from Figure 14. This cobordism is
isotopic to one which begins with a Reidemeister 2 move on (say) the left tangle,
then connects the two plats. (This uses movie move 7 and 13 in Bar-Natan’s reck-
oning [3].) The support of the Reidemeister 2 move is disjoint from the canonical
surgery arc, so the maps assigned to those two cobordisms commute up to homotopy.
This shows that h ◦ r ' r′ ◦ h in Bar-Natan’s cobordism category. Therefore the ho-
motopy can be chosen to be a map defined by handle attachments, and so Figure 14
defines a map of hyperboxes.
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Figure 14. The interesting part of the map for ti.

-R2 -R2

Id Id

Many R2s

h h′

h h′

r r′

Figure 15

Figure 15 shows the argument for si. We have changed the order of handle at-
tachment, but of course the two systems are internally homotopic. The first square
commutes (up to homotopy) because the bottom plats can be passed under the up-
per plats by isotopies which are disjoint from h. For the second square, repeatedly
use movie move 15 to show that h′ ◦ r is equivalent to the cobordism in Figure 16.
This cobordism is a composition of Reidemeister 2 moves with a disjoint canonical
handle attachment. Swap the order of these two maps to obtain r′◦h′. That the next
square and all the ones after it commute up to homotopy follows from Proposition 4.3
(compare with the arguments in the previous proof.)

Figure 16
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r1 and r2 are basically identical to si: use movie move 15 to write a cobordism as
a sequence of Reidemeister 2 moves and disjoint canonical handle attachments.

These maps constitute maps of hypercubes because they are defined locally. They
are invertible, up to homotopy, because all of their components are Reidemeister
moves: one can reverse the maps and run the same argument. Apply the same
process from the previous proof to obtain maps of systems. These homotopies are
also given by cobordisms, so we can obtain homotopies between maps of systems. �

Proposition 7.4. Suppose that t and t′ are tri-plane diagrams in plat form which
differ by a braid transposition. Then Ã(t) ' Ã(t′).

The proof is essentially the same as that of Proposition ??.
To define an invariant of K up to isotopy, we must understand the behavior of

qi(t) under stabilization. To do so we must broaden the class of tri-plane diagrams
to which our construction applies. Say that a 2b-bridge tangle diagram is in hybrid
form if it is a disjoint union of the plat closure of a (2b−2k) braid and k crossingless
arcs. A tri-plane diagram is in hybrid form if each of its tangles is.

Let t be in hybrid form. Define Ã(t) as above. There are two novelties. First, the
ordering of the arcs is slightly different. Suppose that γ belongs to a braid plat and
γ′ to a crossingless plat. Then γ > γ′. If γ and γ′ are both braid or both crossingless
plats, say γ > γ′ exactly as before. Second, the braid crossings are unwound before
crossingless plats are connected.

Proposition 7.5. The construction of Ã(t) extends to diagrams in hybrid form.
Suppose that t and t′ are in the same trisection class and are in plat or hybrid form.
Then Ã(t) ' Ã(t′).

Proof. Let t be in hybrid form. That Ã(t) is an A∞-algebra follows the same argu-
ment as above. So does invariance.

t is isotopic to a diagram t′ in plat form. We may choose this isotopy so that
it only moves the crossingless arcs of t. For a diagram in plat form we may freely
rearrange the order of the plat attachments. To see that Ã(t) ' Ã(t′), put a dot on
the tip of each braid plat of t which becomes a crossingless plat in t′. These dots
mark the points which meet the surgery arc on that plat. Now choose an isotopy
from t′ to t which first slides the dot past other arcs. The dot traces out a path γ′.
Call this intermediate diagram t′′. Define Ã(t′′) by attaching extending the surgery
arc to the slid plat by γ. Use the arguments of Proposition ?? and movie move 15 to
show that Ã(t′′) ' Ã(t). Now slide the rest of the arc to obtain t′. The argument
of Proposition ?? shows that Ã(t′) ' Ã(t′′).

�

Let t be the flat diagram of the bridge number one, unknotted sphere. Let t′ be
the stabilization shown in FIGURE. Then FIGURE shows that µ3 does not vanish
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on A(t′). This shows that stabilization can dramatically change the character of A.
(Note that in any case the rank of A(t′) and its homology must be greater than that
of A(t) and its homology, respectively.)

8. Units, the homology algebra, and minimal models

In this section we study some basic properties of Ã(t) and produce some equivalent
algebras of lower rank.

8.1. Units. Let t = (t1, t2, t3) be a tri-plane diagram in plat form. Observe that
CSz(tit̄i) is an A∞-subalgebra of Ã(t). Define

I(t) = CSz(t1t̄1)⊕ CSz(t2t̄2)⊕ CSz(t3t̄3)

I(t) is an A∞-algebra. Observe that t1t̄1 is isotopic to the plat closure of the identity
braid entirely by Reidemeister 2 moves with support contained entirely in β1β̄1.

Proposition 8.1. The A∞-algebra CSz(tit̄i) is A∞-chain homotopy equivalent to In.

The proof is basically that of Proposition 7.4. Recall that I is the A∞-algebra
assigned to the genus 0 trisection of the unknotted sphere. In Section 6.2 we showed
that the higher operations on I all vanish.

Definition 8.2. Define A(t) to be an A∞-algebra on the vector space

I⊗n1 ⊕ I⊗n2 ⊕ I⊗n3 ⊕
⊕

i,j=1,2,3i 6=j

CS(tit̄j).

where I⊗ni is identified with the algebra of the unwinding of tit̄i. The operations on

A, which we also call mi, are defined identically to those on Ã with the addition of
unwinding maps when the codomain is CSz(tit̄i).

Corollary 8.3. A(t) is an A∞-algebra, and its chain homotopy type is an invariant
of the trisection class of t.

A(t) has substantially lower rank than Ã(t). Another advantage is that it has a
unit. The unit in I⊗n is the diagram labeled with all pluses. Write ι ∈ A(t) for the
sum of units in I⊗n1 , I⊗n2 , and I⊗n3 .

Lemma 8.4. ι is a unit in A(t).

Proof. Certainly m1(u) = 0 and m2(u, x) = x for all x ∈ A(t). Let y = x1⊗ · · · ⊗ xn
be a simple tensor so that xi = u for some i. We aim to show that µi(y) = 0. We
may assume without loss of generality that y ∈ Cs for some sequence s.

Let Hy be the hyperbox used to compute µi(y). Consider a configuration in which
one of the circles of xi is active. That circle has either degree one or indegree and
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outdegree one. Every Szabó and Bar-Natan configuration map vanishes if that circle
is labeled v+.4 It follows from the definition of compression that µi vanishes on y. �

8.2. The homology algebra. In this section we show that, for connected surfaces,
the associative algebra H(A(t)) only detects the genus. We use Otal’s theorem on
bridge splittings of unlinks.

Theorem 8.5. Let t be an (n; c1, c2, c3) triplane diagram in plat form for an oriented,
connected surface S. The graded isomorphism type of the associative algebra H(A(t))
is determined by n, c1, c2, and c3.

Proof. Write m for multiplication on H(A(t)). As tit̄j is an unlink, Kh(tit̄j) has a
unique generator of highest quantum grading called Θij. The set

{λθij : λ ∈ Λ a monomial}
is a basis for Kh(tit̄j). Let

mijk = m(Θij ⊗Θjk).

There is a basepoint action on CKh(tit̄j), see [4] which satisfies

m(XpΘij ⊗Θjk) = Xpm(Θij ⊗Θjk)

as long p lies in ti or t̄k. Choose 2b basepoints on each link where the two tangles
meet. This turns each Khovanov homology group into a cyclic module over

Λ = F[X1, . . . , X2b]/(X
2
1 , . . . , X

2
2b).

m is a Λ-module map. Therefore m is determined by the values of mijk.
mijk can be described cobordism-theoretically: it is given by cij + cjk zero-handle

attachments and then n one-handle attachments. Cap off this cobordism with two-
handles to get a handle decomposition of K. The cobordism is connected if and only
if K is.

To compute mijk, one needs to describe this cobordism diagrammatically. It begins
with the zero-handles and some Reidemeister moves to get titj

∐
tjtk. The Reidmi-

ester maps are graded isomorphisms and will carry highest generators to highest
generators.5 Require that this sequence begin with Reidemeister 1 moves to put
the circles into Otal position and that the rest of the sequence consists of Hilden
moves. Choose a basepoint on each initial crossingless component. It follows from
the functoriality of Khovanov homology that mijk is determined by the multiplica-
tion between the Otal links. These moves may cross the basepoints, but because
all the diagrams are crossingless, the basepoint actions on homology commute with
Reidemiester (and therefore Hilden) moves. So for any two tri-plane diagrams t and

4This is identical to the argument that the algebra Hn in [2] is unital.
5Note that this is not necessarily true for the other generators – Khovanov homology does not

satisfy that much naturality!
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t′ with the same combinatorial data, there is an isomorphism Λ → Λ and an iso-
morphism of Λ-modules, twisted by this isomorphism, so that H(A(t)) ' H(A(t′)).

still not happy
with this. write a
map using the
basepoints from
the algebra to
some kind of otal
construction.

�

This theorem has precedents in independent work of Rasmussen [?] and Tanaka [?].
(It is somewhat surprising that the proof does not use their work.) There is a
natural way to obtain an invariant of closed surfaces in S4 from Khovanov homology:
puncture the surface at its top and bottom, find a movie presentation Σ, determine
the associated map

FΣ : Kh(U)→ Kh(U),

and compute the Θ-coefficient of FΣ(U). Functoriality implies that this map does
not depend on the particular movie presentation. For grading reasons this map must
vanish if K is not a torus, and Rasmussen and Tanaka showed that the map takes
the same value on any torus. Tanaka proved a similar statement for Bar-Natan’s
deformation.

Remark 8.6. Instead of studying H(A(t)), one could form a differential graded alge-
bra A(t) as in the previous section but using only the Khovanov differential. Observe
that H(A(t)) ∼= H(A(t)) as algebras. But Theorem 8.5 does not imply that A(t) is
determined by the genus of K. It would be interesting to study Massey products on
this algebra.6

Theorem 8.5 and the following theorem of Kadeishvili allow us to make A(t) more
concrete as an invariant.

Theorem (Kadeishvili). Let A be an A∞-algebra. There is an A∞-structure on
H(A) so that µ1 = 0, µ2 = m∗2, and A is A∞-quasi-isomorphic to A. If A is unital,
then the structure and quasi-isomorphism may be chosen to be unital as well.

An A∞-algebra with µ1 = 0 is called minimal. It follows that there is a (non-
unique) minimal model for A(t) with rank 23c + 23n. For any two tri-plane diagrams
with the same combinatorial data, we obtain two minimal A∞-algebras which are
isomorphic as associative algebras: the invariant is an A∞-structure on this algebra.

9. Massey products and an isotopy class invariant

In Section 6 we applied CSz to a system of hyperboxes to obtain an A∞-algebra.
In this section we include Bar-Natan’s perturbation to obtain an isotopy class invari-
ant. Our presentation is somewhat roundabout: first, we consider how the ideas of
Section 6 apply to the full differential dSz + dBN. We study the behavior of the top
degree generators under a triple product map. Then we show that the triple product

6Massey products and A∞-constructions are closely related, see [?], so in some sense this is the
subject of Section 6. But they are not identical.
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is well-defined even if one throws out the Bar-Natan contributions. Finally, we show
that this product is, in some sense, invariant under stabilization. There is surely
a faster route to defining the final invariant, but the structure of the intermediate
algebra is interesting in its own right.

The recipe of Definition 6.4 is not compatible with CS. Let µ′i be the putative A∞
operations. Even the A2-relation does not hold:

µ′2(µ′1(x)⊗ y) + µ′2(x⊗ µ′1(y)) + µ′1µ
′
2(x⊗ y) = U−1Wµ′2(dBNx⊗ dBN).

because of the failure of the Künneth formula for Bar-Natan’s theory. The abberant
term on the left is the part of d ◦ dBN in which dBN counts Bar-Natan configurations
with support on both sides of the canonical arcs but not the canonical surgery arcs.

unclarity here
strongly argues to
move Bar-Natan’s

deformation to
here. Also makes
the beginning of
the paper more

standard.

In terms of hyperboxes, the alleged system will fail the face condition: a one-handle
attachment inside the contraction sequence will have an effect on the fixed sequence.

Nevertheless, there is are map µ′i defined via not-quite-systems of hyperboxes. We
will exploit µ′1, µ′2, and µ′3 to define an isotopy class invariant. Let ℵ3 be the left side
of equation 6. Then the µ′ maps satisfy

ℵ3 = U−1W
(
µ′3(dBN(x)⊗ dBN(y)⊗ z)

+ µ′3(dBN(x)⊗ y ⊗ dBN(y)) + µ′3(x⊗ dBN(y)⊗ dBN(z))
)

+ U−2W 2µ′3(dBN(x)⊗ dBN(y)⊗ dBN(z)).

Call this right side i3. Observe that i3 is divisible by W .

9.1. Top generators. Let t be an (n; c12, c23, c31) tri-plane diagram for K. HS(tit̄j)
has a unique element Θij with greatest quantum grading. Write θij for a homogeneous
cycle representative of Θij. Note that θii is unambiguous.

Lemma 9.1. Let x ∈ CS(tit̄j) be a canonical generator such that dx 6= 0where do we use
this

. Then
µ′2(x⊗ θjk) cannot have coefficient at θik which is divisible by W but not W 2.

Proof. For x to have such a term, it must have homological degree (−1) – otherwise
the power of W would be larger. Setting H to 1, the degree one part of

(11) 〈µ′2(x⊗ θjk), θik〉

essentially counts certain two-dimensional configurations in which one decoration
comes from a crossing and the other comes from a handle attachment from a canonical
surgery arc. We may assume that the circles which meet the surgery arc are v+-
labeled. (Any other sort of canonical generator cannot contribute to the coefficient
of θik by the filtration rule.)

Observe that

dµ′2(x⊗ θ) = µ′2(dx⊗ θ) + µ′2(x⊗ dθ) +H−1Wµ′2(dBNx⊗ dBNθ).
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dθ = 0 and dBNθ cannot contribute to the expression in (11) because of its homo-
logical degree. It follows that

〈dµ′2(x⊗ θ), θik〉 = 〈µ′2(dx⊗ θ), θik〉
In fact the term on the left is zero. For suppose that dµ′2(x ⊗ θ) = aθjk + y with
a ∈ F[U,W ]. It follows that y is also a cycle. If y is a boundary then [θjk] = 0. If y is
not a boundary, then it represents a class with lower grading. But then a[θjk] = [y],
which is impossible. It follows that

〈µ′2(dx⊗ θjk), θik〉 = 0

Now suppose that c is a crossing which supports a configuration in the sense above.
Write dc for the component of d which involves c. We can think of

〈µ′2(dcx⊗ θ), θik〉
as a count of two-dimensional configurations which have been divided into two one-
dimensional configurations.7 Let C be a two-dimensional configuration which uses c
and contributes to

〈µ′2(x⊗ θjk), θik〉.
If C is a Szabó configuration, then it must be connected. It follows from the filtration
rule that all the active circles must be positive. Therefore the configuration is either
of type 1 or 8 in Szabó’s list, page WHICH of [9]. Write Cc and C ′ for the one-
dimensional configurations which make up C. One can check directly that, if C is of
one of these two types, then

U−1W 〈µ′2(dc(x)⊗ θik), θik〉 = 〈FC(x⊗ θik), θik〉
where FC is the part of µ′2 which includes C. The same holds for Bar-Natan configu-
rations by the principle at the top of the section. It follows that this still seems

slightly off – what
if their are
multiple
configurations for
a crossing?

〈µ′2(x⊗ θik), θik〉 = U−1W 〈µ′2(dx⊗ θik), θik〉 = 0

�

Lemma 9.2. Fix representatives θij, θjk, and θki. If µ′2(θij ⊗ θjk) has a non-trivial
coefficient at θik, then that coefficient is

H
n+cik−cij−cjk

2 .

Proof. From consideration of the homological degree we can think of µ2 instead of
µ′2. The näıve quantum degree of µ′2 is −n. The grading of θij ⊗ θjk is cij + cjk, so
µ′2(θij ⊗ θjk) has grading cij + cjk − n. If Ha is the coefficient of θik in µ′2(θij ⊗ θjk),
then

−aijk + cik = cij + cjk − n
7Compare to “broken polygons” in, for example, Heegaard Floer homology.
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and therefore

a =
n+ cik − cij − cjk

2
.

�

For crossingless links, the formula above can be worked out by counting the number
of merges and splits in Ξ. It’s a fun exercise to check that the formulas coincide.

The formula implies that µ2(θij ⊗ θjk) has coefficient 0 at θik if n+ cij − cjk + cki
is odd. One can check this directly for the standard diagrams of projective planes.
If i, j, and k are distinct then

aijk = −χ(K)

2
+ cik.

So the coefficient vanishes if χ(K) is odd. Note also that

aiji =
n+ n− 2cij

2
= n− cij

and

aiii = 0.

ok but why subtract one?

Lemma 9.3. The Hn−χ(K)/2−1Wθii-coordinate of µ3(θij ⊗ θjk ⊗ θki) does not depend
on the choice of homogeneous representatives.

Proof. There is only one choice for θii. Let dx be a boundary in CS(tit̄j) with
homological degree 0. Then

µ′3(dx⊗ θjk ⊗ θki) = µ′2(x⊗ µ′2(θjk ⊗ θki)) + µ′2(µ′2(x⊗ θjk)⊗ θki) + i3(x, θjk, θki).

Every term of i3 involves applying dBN to at least one θ and therefore it cannot con-
tribute. Lemma 9.1 shows that µ′3(dx⊗θjk⊗θki) has coefficient zero atHn−χ(K)/2Wθii.
A similar proof applies with dy or dz in the place of θjk or θki. �

9.2. Triple product invariants.

Definition 9.4. Let q′ijk(t) ∈ Z/2Z to be the coefficient of Un−χ(K)/2−1Wθii in

µ′3(θij ⊗ θjk ⊗ θki).

When the values of i, j, and k are not important we will omit them. Lemma 9.3
shows that qijk(t) does not depend on the choice of θs. We chose the exponent in
light of Lemma 9.2.a bit more

Proposition 9.5. q′(t) does not depend on the choice of representatives θ.

Proof. Follows immediately from Lemma 9.3. �
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Observe also that, in computing q′, one can almost forget that the θs come from
diagrams with crossings: no configuration involving a crossing can contribute to θii.
In other words, one can treat the θs as sums of generators from flat diagrams. One
still has to remember the crossings to unwind them at the end, but these unwinding
maps cannot involve any higher configurations from the same reason. Therefore we
may compute q by a hyperbox of chain complexes in which each link diagram is
crossingless.

Write H for such a hyperbox underlying the computation of µ′3(x) for some simple
tensor x which is a summand of a θ. Write H̄ for the same hyperbox but with all the
higher Bar-Natan differentials removed. This is still a hyperbox because each cube
of H ′ belongs to a link diagram with at most two crossings, so the two-dimensional
differential is totally unconstrained.

Definition 9.6. Let qijk(t) ∈ Z/2Z to be the coefficient of Un−χ(K)/2−1Wθii in

µ̄3(θij ⊗ θjk ⊗ θki).

where µ̄3 has the same underlying hyperbox as µ′3 but without any higher Bar-Natan
differentials.

Proposition 9.7. q(t) does not depend on the chosen θs.

Before proving the proposition, note that dKh + dBN is a differential. Write µ′′3 for
the resulting triple multiplication. Then

µ′3 = µ′′3 + µ̄3

Observe that (dKh + dBN, µ
′′
2, µ

′′
3) forms the same sort of “perturbed A3-algebra” as

(µ′1, µ
′
2, µ

′
3); after all, the Bar-Natan differential is the source of the perturbation.

Proof. We claim that

µ′′3(∂x⊗ θjk ⊗ θki) = µ′′3((dKh + dBN)x⊗ θjk ⊗ θki) + µ3(dSzx⊗ θjk ⊗ θki)
= µ′′2(x⊗ µ′′2(θjk ⊗ θki)) + µ′′2(µ′′2(x⊗ θjk)⊗ θki)

+ µ′′3(x⊗ (dKh + dBN)θjk ⊗ θki) + µ′′3(x⊗ θjk ⊗ (dKh + dBN)θki))

+ µ′′3(dSzx⊗ θjk ⊗ θki)
+ i′3(x, θjk, θki).

This is just the perturbed A3-relation. Note that dKh + dBNθ 6= 0 because the θs are
∂-cycles – Lemma 9.1 does not apply for this reason. Nevertheless, (dKh + dBN)θ is
divisible by W . One way to see this is that

(dKh + dBN)θ = dSzθ.
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It follows that the terms in third and fourth lines cannot contribute to the W -degree
one coefficient of θii. Neither can the i′3 term for the usual reasons. Therefore,
writing 〈−,−〉 for the W -degree one components,

〈µ′′3(∂x⊗ θjk ⊗ θki), θii〉 = 〈µ′′2(x⊗ µ′′2(θjk ⊗ θki)) + µ′′2(µ′′2(x⊗ θjk)⊗ θki), θii〉

Now the arguments of Lemmas 9.1 and 9.3 does apply, and therefore the W -degree
one part of

〈µ′′3(∂x⊗ θjk ⊗ θki), θii〉
vanishes. A similar argument applies to adding a cycle in the second or third position.

It follows that the terms in the second line are divisible by W 2 and therefore do
not contribute to q(t). Therefore the W -degree one part of

〈µ′′3(∂x⊗ θjk ⊗ θki), θii〉

is zero. Therefore the W -degree one part of

〈µ̄3(∂x⊗ θjk ⊗ θki), θii〉 = 〈(µ′3 + µ′′3)(∂x⊗ θjk ⊗ θki), θii〉

is zero. It follows that p(t) is well-defined. �

Proposition 9.8. Suppose that t and t′ belong to the same trisection class. Then
qijk(t) = qijk(t

′) for all i, j, and k, and similarly for q′.

Proof. In Section 7 we constructed a chain homotopy equivalence of A∞-algebras

ρ : A(t)→ A(t′).

It satisfies ρ1,∗(Θij) = Θ′ij for all i and j. Using the same arguments, we can produce
linear maps

ρ′i : A(t)⊗i → A
using the same cobordisms and CS. ρ′1 is a graded chain homotopy equivalence and
therefore ρ1,∗(Θij) = Θ′ij. The modified A2-relation is

ρ′2(µ′1x⊗y)+ρ′2(x⊗µ′1y)+µ′1ρ
′
2(x⊗y)+µ′2(ρ′1x⊗ρ′1y)+ρ′1µ

′(x⊗y) = H−1Wρ′2(dBNx⊗dBNy).

The modified A3-relation, applied to the θs, is

ρ′3(µ′1θij ⊗ θjk ⊗ θki) + ρ′3(θij ⊗ µ′1θjk ⊗ θki) + ρ′3(θij ⊗ θjk ⊗ µ′1θki) + µ′1ρ3(θij ⊗ θjk ⊗ θki)
= ρ′2(µ′2(θij ⊗ θjk)⊗ θki) + ρ′2(θij ⊗ µ′2(θjk ⊗ θki))
+ µ′′2(θ′ij ⊗ ρ′2(θjk ⊗ θki)) + µ′2(ρ2(θij ⊗ θjk)⊗ θ′ki)
+ ρ′1µ

′
3(θij ⊗ θjk ⊗ θki) + µ′3(θ′ij ⊗ θ′jk ⊗ θ′ki)

+H−1W (ρ′3(dBNθij ⊗ dBNθjk ⊗ θki) + ρ′3(dBNθij ⊗ θjk ⊗ dBNθki) + ρ′3(θij ⊗ dBNθjk ⊗ dBNθki))

+H−2W 2ρ′3(dBNθij ⊗ dBNθjk ⊗ dBNθki).
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We aim to show that only the fourth line can contribute. The proposition for p′

follows.
• The first line is zero because each θ is a ∂-cycle and µ′1 = 0 on CS(tit̄i).
• The second line is the most difficult. We have

µ′2(θij ⊗ θjk) = bHaijkθik + dw + lower order cycles.

We show that each of these terms cannot be part of a contribution. The first
one: ρ2(θ ⊗ θ) cannot contribute by grading. Next, observe that

ρ2(dw ⊗ θki) = µ′2(ρ1(w)⊗ θ′ki) +WH−1ρ2(dBNw ⊗ dBNθki).

If w ∈ ker(ρ1) then we are done. If not, then Lemmas 9.1 and ?? apply.
Therefore the dw term cannot be part of a contribution. Finally, the lower
order cycles cannot be part of a contribution by the filtration rule.
• The third line is the subject of Lemma 9.1.
• The last two lines cannot contribute by consideration of the homological

grading.
This completes the proof for q′. Observe that q′(t) + q(t) is a coefficient of

µ′′(θij ⊗ θjk ⊗ θki)

and so its invariance can be proved in exactly the same argument as above. Therefore
q(t)+q′(t) is an invariant of the trisection class of t. It follows that q(t) is as well. �

examples: unknotted sphere, projective plane, torus to show asymmetry.

9.3. Stabilization. The rest of this section is devoted to proving the following the-
orem.

Theorem 9.9. Let t′ be a stabilization of t. Then qijk(t
′) = qijk(t).

q′ is not invariant under stabilization. The best way to see this is to try to prove
the theorem for q′. We will see that the difference between q′(t) and q′(t′) comes
entirely from Bar-Natan contributions. This will prove Theorem 9.9 and show how
to generate examples of q′s non-invariance.

Stabilization is not symmetric in the tangles of t. We will study q123 and distinguish
between central stabilization – stabilization which splits a component of t2t̄3 – and
edge stabilization – stabilization which splits a component of t1t̄2 or t3t̄1. Central
and edge stabilization can be defined analogously for q231 and q312.

9.3.1. Central stabilization. Let t′ be the tri-plane diagram given by splitting a cross-
ingless component in t2t̄3. Write Θ and Θ′ for Θ1231 and Θ′1231, respectively. Let H
be the hyperbox underlying the computation of µ′3(Θ): it is two-dimensional with
shape (b, b). µ′3(θ) is the sum of b2 maps applied to Θ, one for each diagonal of H.
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Likewise, H ′, the hyperbox underlying µ′3(Θ′), has shape (b+ 1, b+ 1), and µ′3(Θ′) is
the sum of (b+ 1)2 maps applied to Θ′.

The arc of stabilization can be specified by the Ξ arcs which lie directly above it.
Suppose that these are the n1-st (on the left) and n2-st (on right) handles. Call the
(n1 + 1)-st and the (n2 + 1)-st Ξ handles in t′ the new handles. See FIGURE. Now
we can divide the squares of Hθ′ into four groups. We identify each square with its
the coordinates of its bottom-left point. Consider the (j1, j2) square.

• If j1 ≤ n1 and j2 ≤ n2, then the square is pre-stabilization.
• If j1 > n1 + 1 and j2 > n2 + 1, then the square is post-stabilization.
• If j1 > n1 + 1 or j2 > n2 + 1 but not both, then the square is a side square.

Pre-stabilization, post-stabilization, and side square are all called old squares.
• The unique square with j1 = n1 + 1 and j2 = n2 + 1 is called the square of

stabilization.
• The other squares with either j1 = n1 + 1 or j2 = n2 + 1, but not both, are

called new squares.
We will compare µ′3(θ′) to µ′3(θ) by showing that new squares and the square of

stabilization contribute nothing to µ′3(θ′), while the other squares make the same
contribution times H. (Accordingly, the squares could be put into two categories:
old and new. We find this separation clearer.) Let p′j1,j2 be the path which uses the
diagonal in the square with lower left corner at (j1, j2). Conflate this path with the
map along this path.

Suppose that p′j1,j2 is pre-stabilization. Observe that the active part of the

configuration at H ′(j1,j2) is identical to that of H(j1,j2). Write p/j1,j2 (resp. p/′j1,j2) for the

composition of all the maps in pj1,j2 (resp. p′j1,j2) up to and including the diagonal.
From the observation it follows that

p/′j1,j2(θ
′) = p/j1,j2(θ)⊗ v+

where the extra v+ factor can be identified with the new component of t′2t̄
′
3. (This

component is always passive in every configuration in p/′.) In short, the topology of
the active parts of all the relevant diagrams is the same for the two p/ maps. The maps
after the diagonal are all single handle attachments. FIGURE shows that the only
difference between all the configurations for pj1,j2(θ) and p′j1,j2(θ

′) after the diagonal
is that p′j1,j2 contains an extra merge and then split on a v+-labeled, crossingless
component. It follows that

〈p′j1,j2(Θ
′),Θ′ii〉 = U〈Upj1,j2(θ),Θii〉.

Suppose that p′j1,j2 is post-stabilization. The same analysis applies. The only
difference is that the extra merge and split occur before the diagonal.

Suppose that p′j1,j2 is a side square. The analysis is more or less the same.
There is an extra merge before the diagonal, and an extra split after. The key
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Figure 17. The division of H ′ into old and new squares after a (?, ?)-
stabilization. The blue squares are old, the red squares are new, and
the green square is the square of stabilization.

observation is that the configuration Hj1,j2 does not involve one of the new handles
and is still unaffected by the stabilization. We conclude that

〈p′j1,j2(Θ
′),Θ′ii〉 = U〈pj1−1,j2(θ),Θii〉.

or

〈p′j1,j2(Θ
′),Θ′ii〉 = U〈pj1,j2−1(θ),Θii〉.

depending on the side.
Suppose that p′j1,j2 is new. There are a few possibilities here. If the square

is new and left or below the square of stabilization, then it involves a degree one,
plus-labeled circle. Therefore p′j1,j2 = 0. If the square is on the upper right, then it
involves a dual degree one arrow on a plus-labeled circle. This could support either a
Szabó configuration of type E or a dual tree configuration. The type E configuration
cannot contribute to the coefficient of the highest generator because the result has
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a minus-labeled strand at a basepoint. However, there can be higher Bar-Natan
contributions. See the next section for an example.

Suppose that p′j1,j2 corresponds to the square of stabilization. The active
part of this configuration contains a v+-labeled circle with in- and out-degree 1. It
follows that the diagonal map is zero.

9.3.2. Edge stabilization. We can do the same sort of analysis using FIGURE.
Suppose that p′j1,j2 is pre- or post-stabilization. The analysis is basically the

same. The only difference is that the extra-merge-split combo do not happen to the
same component. The merge must be of a plus-labeled circle. The split must be as
well: there must be a canonical generator with plusses there, and θii must have a v+

there. Therefore

p/′j1,j2(θ
′) = p/j1,j2(θ)⊗ v+

Suppose that p′j1,j2 is new. Again, there are two possibilities. One involves
a degree one arrow on a plus-labeled component and so it cannot contribute. The
other involves a dual degree one arrow to a plus-labeled component, and the analysis
above applies.inshallah

Suppose that p′j1,j2 corresponds to the square of stabilization. The active
part of this configuration involves a degree one, plus-labeled circle and therefore
cannot contribute.

�

10. Disjoint union and spun (2, p)-torus links

If c1 = b, then q(t) = 0 by unitality. (M-Z show that t is unknotted sphere
anyway.)

10.1. Disjoint union. Let t be a split diagram, t = t0∪t1. Then q(t) = Hb1−χ(K1)/2q(t0)+
Hb0−χ(K0)/2q(t1).

Proposition 10.1. Let t = t0

∐
t1 be a split tri-plane diagram. Then

q(t) = q(t0) + q(t1).

This is a really
bizarre formula.

Sort of
concordance-y? a

knot and its
push-off “cancel”

because they
cobound...

is there a non-split example? spun (2, 2p)?

10.2. Connected sum. next time
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p p p

Figure 18. The tri-plane diagram tp for the spun (2, p)-torus link.

10.3. Spins. In [6], Meier and Zupan systematically produce bridge trisection di-
agrams for spins of knots. Figure 18 shows a tri-plane diagram tp for the spun
(2, p)-torus link. If p is odd then tp presents a knotted sphere. If p is even and
non-zero then tp presents a non-trivial link of an unknotted sphere and torus. These
diagrams have b = 4 and χ = 2.

Theorem 10.2. q(tp) = 1.

This theorem shows that q can distinguish knotted and unknotted spheres. The
method of computation may be widely applicable. We will compute q(t0), then show
that q(tp) = q(t0) for all p. In other words, the “braidlike resolution” of tp is the only
resolution which contributes. It is interesting to consider the topological meaning of
such a resolution.

Let’s begin with a few observations about computing q(t) in general. A resolution
of tit̄j may be written IJ̄ where I is a resolution of ti and J is a resolution of tj.
Consider the cancellation

tit̄jtj t̄k → tit̄k.

Let x ∈ CS(tit̄jtj t̄k) be a simple tensor in resolution IJJ̄ ′K. Studying the Reide-
meister 2 maps (Figure WHICH of [3]), we see that the corresponding map

CS(tit̄jtj t̄k)→ CS(tit̄k)

vanishes unless J = J ′. To compute µ3(θij ⊗ θjk ⊗ θki) one must compute repre-
sentatives for the θs, build a bunch of hyperboxes, and so on. What this discussion
shows is that we only need to consider canonical generators in which θij and θjk have
mirrored underlying resolutions on tj. The same argument applies to the θjk and θki
with respect to tk and to θij and θki with respect to ti. In other words, we need only
consider terms in µ̄3(θij ⊗ θjk ⊗ θki) with underlying resolution of the form

IJ̄JK̄KĪ.

Moreover, µ̄3 is increasing in the underlying resolution of simple tensors. It follows
that we need only consider terms of θij ⊗ θjk ⊗ θki of the form

IJ̄ ⊗ JK̄ ⊗KĪ.
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The upshot is that we can basically ignore the “filtered structure” on CS and just
look at a few hyperboxes.improve Lastly, recall that by the filtration rule we may throw out
any canonical generators with a v−-label on a bridgepoint.

Proof. We show that q(K0) = 1 by direct computation in the next lemma.
Observe that each tit̄i+1 can be unwound to a crossingless diagram using only R2

moves. The canonical generators are therefore of one of the forms shown in Figure ??.
Label the terms by their resolutions, i.e.

θij =
∑

θij;IĪ .

Following the discussion above,

µ̄3(θ12 ⊗ θ23 ⊗ θ31) =
∑
I

µ3(θ12;I , θ23;I , θ31;I).

So we need only consider p products instead of 2p.

Figure 19. θ12⊗θ23⊗θ31 for t0. Every component is v+-labeled. For
p 6= 0, this generator still appears in the resolution called I0.

Figure 20. H−1(θ12 ⊗ θ23 ⊗ θ31) for a resolution of tp which differs
from I0 only in two crossings. (We have supressed a power of H.) A
type B resolution is one which differs from I0 in at most two crossings
in at least one tangle.
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Figure 21. An H-multiple of θ12⊗ θ23⊗ θ31 for a resolution not con-
sidered above. A type C resolution is one which differs from a type B
resoltuion by changing more crossings. Therefore these generators are
formed by applying a Reidemeister 2 move to non-bridge components
of a type B or type C resolution. The dotted circle indicates that the
circle is v−-labeled. The other possible generators on the same reso-
lution are obtained by swapping the dotting to the opposite circle or
removing the dotting and multiplying by H.

t0 is a resolution J of tp for any p. We claim that this is the only resolution which
contributes to q(t). The point is that the Reidemeister 2 cancellation requires the
central circle to be v−-labeled. Therefore a type B resolution cannot contribute.

For the type C resolutions we must be a little more careful. The situation before
attaching canonical handles is shown on the left in FIGURE. On the right is the
situation after attaching the handles – the long oval must be v−-labeled because it’s
the first circle to be capped off in cancellation. We have filled in the circles which are
”innermost” among the circles created by the initial Reidemeister 2. These circles
must be v+-labeled. In the penultimate cancellation, these circles are merged. The
result is a v+-labeled circle. This circle is the last to be canceled. We conclude that
the final cancellation map comes to zero.

In summary,

〈µ3(Θ12,Θ23,Θ31), H2WΘ11〉 = 〈µ3(Θ12;J ,Θ23;J ,Θ31;J), H2WΘ11〉 = 1.

�

Lemma 10.3. q(t0) = 1.

Proof. t0 is the split union of an unknotted sphere and a diagram t′ of a torus. We
may ignore the sphere component. The hyperbox for the torus computation is below.
In Section 9.3 we saw that the computation comes down to studying the diagonals
of each squares of this hyperbox. Any square with a degree one circle contributes
nothing: that circle must be v+-labeled, so the corresponding Szabó map vanishes.
That leaves two configurations. One is of type 12 in Szabó’s numbering and therefore
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vanishes. The other (in the top right) is of type 1 and therefore is non-vanishing on
v+ ⊗ v+. It follows from a short computation (or our study of the gradings above)
that the path with this diagonal contributes a Θ11-coefficient of H2W .

�

10.4. Stabilization non-invariance of µ′3. stabilize twice(?) at the bottom, then
top
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sequence in Khovanov homology. arXiv preprint arxiv:1410.2877 [math.GT], 2016.
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Figure 22. The hyperbox from Lemma 10.3. The diagrams between
vertices show the corresponding Szabó configuration (up to isotopy).
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